IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/05-02.html
   My bibliography  Save this paper

A Measure of Distance for the Unit Root Hypothesis

Author

Listed:
  • Patrick Marsh

Abstract

This paper proposes and analyses a measure of distance for the unit root hypothesis tested against stochastic stationarity. It applies over a family of distributions, for any sample size, for any specification of deterministic components and under additional autocorrelation, here parameterised by a finite order moving-average. The measure is shown to obey a set of inequalities involving the measures of distance of Gibbs and Su (2002) which are also extended to include power. It is also shown to be a convex function of both the degree of a time polynomial regressors and the moving average parameters. Thus it is minimisable with respect to either. Implicitly, therefore, we find that linear trends and innovations having a moving average negative unit root will necessarily make power small. In the context of the Nelson and Plosser (1982) data, the distance is used to measure the impact that specification of the deterministic trend has on our ability to make unit root inferences. For certain series it highlights how imposition of a linear trend can lead to estimated models indistinguishable from unit root processes while freely estimating the degree of the trend yields a model very different in character.

Suggested Citation

  • Patrick Marsh, "undated". "A Measure of Distance for the Unit Root Hypothesis," Discussion Papers 05/02, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:05/02
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2005/0502.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    2. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
    3. DeJong, David N & Whiteman, Charles H, 1991. "The Case for Trend-Stationarity Is Stronger Than We Thought," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 413-421, Oct.-Dec..
    4. Forchini, G., 2002. "The Exact Cumulative Distribution Function Of A Ratio Of Quadratic Forms In Normal Variables, With Application To The Ar(1) Model," Econometric Theory, Cambridge University Press, vol. 18(4), pages 823-852, August.
    5. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    6. DeJong, David N, et al, 1992. "Integration versus Trend Stationarity in Time Series," Econometrica, Econometric Society, vol. 60(2), pages 423-433, March.
    7. Alok Bhargava, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(3), pages 369-384.
    8. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    9. Werner Ploberger & Peter C. B. Phillips, 2003. "Empirical Limits for Time Series Econometric Models," Econometrica, Econometric Society, vol. 71(2), pages 627-673, March.
    10. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    11. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
    12. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    13. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    14. Hillier, Grant H., 1987. "Classes of Similar Regions and Their Power Properties for Some Econometric Testing Problems," Econometric Theory, Cambridge University Press, vol. 3(1), pages 1-44, February.
    15. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    16. Leybourne, Stephen J. & C. Mills, Terence & Newbold, Paul, 1998. "Spurious rejections by Dickey-Fuller tests in the presence of a break under the null," Journal of Econometrics, Elsevier, vol. 87(1), pages 191-203, August.
    17. Peter C.B. Phillips, 2001. "Regression with Slowly Varying Regressors," Cowles Foundation Discussion Papers 1310, Cowles Foundation for Research in Economics, Yale University.
    18. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    19. repec:cup:etheor:v:10:y:1994:i:3-4:p:774-808 is not listed on IDEAS
    20. repec:bla:jecsur:v:12:y:1998:i:5:p:423-69 is not listed on IDEAS
    21. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2007. "A simple, robust and powerful test of the trend hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 1302-1330, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    2. Marsh, Patrick, 2007. "The Available Information For Invariant Tests Of A Unit Root," Econometric Theory, Cambridge University Press, vol. 23(4), pages 686-710, August.
    3. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
    4. Scott E. Harrington & Tong Yu, 2003. "Do Property‐Casualty Insurance Underwriting Margins Have Unit Roots?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 715-733, December.
    5. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    6. Jürgen Wolters & Uwe Hassler, 2006. "Unit Root Testing," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 4, pages 41-56, Springer.
    7. Laura Mayoral, 2005. "Is the observed persistence spurious? A test for fractional integration versus short memory and structural breaks," Economics Working Papers 956, Department of Economics and Business, Universitat Pompeu Fabra.
    8. D. Ventosa-Santaulària, 2009. "Spurious Regression," Journal of Probability and Statistics, Hindawi, vol. 2009, pages 1-27, August.
    9. Podivinsky, Jan M. & King, Maxwell L., 2000. "The exact power envelope of tests for a unit root," Discussion Paper Series In Economics And Econometrics 0026, Economics Division, School of Social Sciences, University of Southampton.
    10. Charles Nelson & Jeremy Piger & Eric Zivot, 1999. "Unit Root Tests in the Presence of Markov Regime-Switching," Discussion Papers in Economics at the University of Washington 0040, Department of Economics at the University of Washington.
    11. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    12. Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019. "Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence," Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
    13. Lawrence E. Raffalovich, 1994. "Detrending Time Series," Sociological Methods & Research, , vol. 22(4), pages 492-519, May.
    14. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Unit Root Testing In Practice: Dealing With Uncertainty Over The Trend And Initial Condition," Econometric Theory, Cambridge University Press, vol. 25(3), pages 587-636, June.
    15. Charles, Amélie & Darné, Olivier, 2012. "Trends and random walks in macroeconomic time series: A reappraisal," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 167-180.
    16. Cuestas, Juan C. & Gil-Alana, Luís A., 2009. "Further evidence on the PPP analysis of the Australian dollar: Non-linearities, fractional integration and structural changes," Economic Modelling, Elsevier, vol. 26(6), pages 1184-1192, November.
    17. Distaso, Walter, 2008. "Testing for unit root processes in random coefficient autoregressive models," Journal of Econometrics, Elsevier, vol. 142(1), pages 581-609, January.
    18. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, June.
    19. David I. Harvey, & Stephen J. Leybourne, & A. M. Robert Taylor, 2007. "Testing for a unit root when uncertain about the trend [Revised to become 07/03 above]," Discussion Papers 06/03, University of Nottingham, Granger Centre for Time Series Econometrics.
    20. Nelson, Charles R & Piger, Jeremy & Zivot, Eric, 2001. "Markov Regime Switching and Unit-Root Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 404-415, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:05/02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Hodgson (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.