IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v33y2020i1d10.1007_s10959-018-0867-4.html
   My bibliography  Save this article

Wasserstein and Kolmogorov Error Bounds for Variance-Gamma Approximation via Stein’s Method I

Author

Listed:
  • Robert E. Gaunt

    (The University of Manchester)

Abstract

The variance-gamma (VG) distributions form a four-parameter family that includes as special and limiting cases the normal, gamma and Laplace distributions. Some of the numerous applications include financial modelling and approximation on Wiener space. Recently, Stein’s method has been extended to the VG distribution. However, technical difficulties have meant that bounds for distributional approximations have only been given for smooth test functions (typically requiring at least two derivatives for the test function). In this paper, which deals with symmetric variance-gamma (SVG) distributions, and a companion paper (Gaunt 2018), which deals with the whole family of VG distributions, we address this issue. In this paper, we obtain new bounds for the derivatives of the solution of the SVG Stein equation, which allow for approximations to be made in the Kolmogorov and Wasserstein metrics, and also introduce a distributional transformation that is natural in the context of SVG approximation. We apply this theory to obtain Wasserstein or Kolmogorov error bounds for SVG approximation in four settings: comparison of VG and SVG distributions, SVG approximation of functionals of isonormal Gaussian processes, SVG approximation of a statistic for binary sequence comparison, and Laplace approximation of a random sum of independent mean zero random variables.

Suggested Citation

  • Robert E. Gaunt, 2020. "Wasserstein and Kolmogorov Error Bounds for Variance-Gamma Approximation via Stein’s Method I," Journal of Theoretical Probability, Springer, vol. 33(1), pages 465-505, March.
  • Handle: RePEc:spr:jotpro:v:33:y:2020:i:1:d:10.1007_s10959-018-0867-4
    DOI: 10.1007/s10959-018-0867-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-018-0867-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-018-0867-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    3. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barman, Kalyan & Upadhye, Neelesh S., 2022. "On Brascamp–Lieb and Poincaré type inequalities for generalized tempered stable distribution," Statistics & Probability Letters, Elsevier, vol. 189(C).
    2. Alexander Bulinski & Nikolay Slepov, 2022. "Sharp Estimates for Proximity of Geometric and Related Sums Distributions to Limit Laws," Mathematics, MDPI, vol. 10(24), pages 1-37, December.
    3. Barman, Kalyan & Upadhye, Neelesh S., 2024. "On Stein factors for Laplace approximation and their application to random sums," Statistics & Probability Letters, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    2. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    3. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    4. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    5. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    6. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, July.
    7. Luca Spadafora & Marco Dubrovich & Marcello Terraneo, 2014. "Value-at-Risk time scaling for long-term risk estimation," Papers 1408.2462, arXiv.org.
    8. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    9. Roman Ivanov, 2015. "The distribution of the maximum of a variance gamma process and path-dependent option pricing," Finance and Stochastics, Springer, vol. 19(4), pages 979-993, October.
    10. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    11. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    12. Luiz Vitiello & Ivonia Rebelo, 2015. "A note on the pricing of multivariate contingent claims under a transformed-gamma distribution," Review of Derivatives Research, Springer, vol. 18(3), pages 291-300, October.
    13. A. Szimayer & R. Maller, 2004. "Testing for Mean Reversion in Processes of Ornstein-Uhlenbeck Type," Statistical Inference for Stochastic Processes, Springer, vol. 7(2), pages 95-113, May.
    14. Dilip B. Madan & King Wang, 2022. "Two sided efficient frontiers at multiple time horizons," Annals of Finance, Springer, vol. 18(3), pages 327-353, September.
    15. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    16. Dilip B. Madan & Yazid M. Sharaiha, 2015. "Option overlay strategies," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1175-1190, July.
    17. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    18. Yiu Lim Lui & Weilin Xiao & Jun Yu, 2022. "The Grid Bootstrap for Continuous Time Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1390-1402, June.
    19. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    20. Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:33:y:2020:i:1:d:10.1007_s10959-018-0867-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.