IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1848-d1122579.html
   My bibliography  Save this article

Second Order Chebyshev–Edgeworth-Type Approximations for Statistics Based on Random Size Samples

Author

Listed:
  • Gerd Christoph

    (Department of Mathematics, Otto-von-Guericke University Magdeburg, 39016 Magdeburg, Germany
    These authors contributed equally to this work.)

  • Vladimir V. Ulyanov

    (Faculty of Computer Science, HSE University, 101000 Moscow, Russia
    Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow, Russia
    These authors contributed equally to this work.)

Abstract

This article completes our studies on the formal construction of asymptotic approximations for statistics based on a random number of observations. Second order Chebyshev–Edgeworth expansions of asymptotically normally or chi-squared distributed statistics from samples with negative binomial or Pareto-like distributed random sample sizes are obtained. The results can have applications for a wide spectrum of asymptotically normally or chi-square distributed statistics. Random, non-random, and mixed scaling factors for each of the studied statistics produce three different limit distributions. In addition to the expected normal or chi-squared distributions, Student’s t -, Laplace, Fisher, gamma, and weighted sums of generalized gamma distributions also occur.

Suggested Citation

  • Gerd Christoph & Vladimir V. Ulyanov, 2023. "Second Order Chebyshev–Edgeworth-Type Approximations for Statistics Based on Random Size Samples," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1848-:d:1122579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1848/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1848/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerd Christoph & Vladimir V. Ulyanov, 2021. "Chebyshev–Edgeworth-Type Approximations for Statistics Based on Samples with Random Sizes," Mathematics, MDPI, vol. 9(7), pages 1-28, April.
    2. Christian Schluter & Mark Trede, 2016. "Weak convergence to the Student and Laplace distributions," Post-Print hal-01447853, HAL.
    3. Victor Korolev & Andrey Gorshenin, 2020. "Probability Models and Statistical Tests for Extreme Precipitation Based on Generalized Negative Binomial Distributions," Mathematics, MDPI, vol. 8(4), pages 1-30, April.
    4. Fujikoshi, Y. & Ulyanov, V.V. & Shimizu, R., 2005. "L1-norm error bounds for asymptotic expansions of multivariate scale mixtures and their applications to Hotelling's generalized," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 1-19, September.
    5. Alexander Bulinski & Nikolay Slepov, 2022. "Sharp Estimates for Proximity of Geometric and Related Sums Distributions to Limit Laws," Mathematics, MDPI, vol. 10(24), pages 1-37, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander N. Tikhomirov & Vladimir V. Ulyanov, 2023. "On the Special Issue “Limit Theorems of Probability Theory”," Mathematics, MDPI, vol. 11(17), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerd Christoph & Vladimir V. Ulyanov, 2021. "Chebyshev–Edgeworth-Type Approximations for Statistics Based on Samples with Random Sizes," Mathematics, MDPI, vol. 9(7), pages 1-28, April.
    2. Massing, Till & Puente-Ajovín, Miguel & Ramos, Arturo, 2020. "On the parametric description of log-growth rates of cities’ sizes of four European countries and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Gabriela Oliveira & Wagner Barreto-Souza & Roger W. C. Silva, 2021. "Convergence and inference for mixed Poisson random sums," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 751-777, July.
    4. Arturo Ramos & Till Massing & Atushi Ishikawa & Shouji Fujimoto & Takayuki Mizuno, 2023. "Composite distributions in the social sciences: A comparative empirical study of firms' sales distribution for France, Germany, Italy, Japan, South Korea, and Spain," Papers 2301.09438, arXiv.org.
    5. Fujikoshi, Yasunori & Ulyanov, Vladimir V., 2006. "Error bounds for asymptotic expansions of Wilks' lambda distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 1941-1957, October.
    6. Siotani, Minoru & Wakaki, Hirofumi, 2006. "Contributions to multivariate analysis by Professor Yasunori Fujikoshi," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 1914-1926, October.
    7. Luca Pratelli & Pietro Rigo, 2021. "Convergence in Total Variation of Random Sums," Mathematics, MDPI, vol. 9(2), pages 1-11, January.
    8. Andreas Masuhr, 2017. "Volatility Transmission in Overlapping Trading Zones," CQE Working Papers 6717, Center for Quantitative Economics (CQE), University of Muenster.
    9. Christian Schluter & Mark Trede, 2019. "Size distributions reconsidered," Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 695-710, July.
    10. Korolev, Victor & Zeifman, Alexander, 2021. "Bounds for convergence rate in laws of large numbers for mixed Poisson random sums," Statistics & Probability Letters, Elsevier, vol. 168(C).
    11. Alexander N. Tikhomirov & Vladimir V. Ulyanov, 2023. "On the Special Issue “Limit Theorems of Probability Theory”," Mathematics, MDPI, vol. 11(17), pages 1-4, August.
    12. Andrey Gorshenin & Victor Kuzmin, 2022. "Statistical Feature Construction for Forecasting Accuracy Increase and Its Applications in Neural Network Based Analysis," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    13. Gerd Christoph & Vladimir V. Ulyanov, 2020. "Second Order Expansions for High-Dimension Low-Sample-Size Data Statistics in Random Setting," Mathematics, MDPI, vol. 8(7), pages 1-28, July.
    14. Victor Korolev, 2022. "Bounds for the Rate of Convergence in the Generalized Rényi Theorem," Mathematics, MDPI, vol. 10(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1848-:d:1122579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.