Application of Natural Language Processing and Machine Learning Boosted with Swarm Intelligence for Spam Email Filtering
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rajendra Akerkar, 2019. "Artificial Intelligence for Business," SpringerBriefs in Business, Springer, number 978-3-319-97436-1, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jani Dugonik & Mirjam Sepesy Maučec & Domen Verber & Janez Brest, 2023. "Reduction of Neural Machine Translation Failures by Incorporating Statistical Machine Translation," Mathematics, MDPI, vol. 11(11), pages 1-22, May.
- Dušan S. Radivojević & Ivan M. Lazović & Nikola S. Mirkov & Uzahir R. Ramadani & Dušan P. Nikezić, 2023. "A Comparative Evaluation of Self-Attention Mechanism with ConvLSTM Model for Global Aerosol Time Series Forecasting," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
- U. M. Fernandes Dimlo & V. Rupesh & Yeligeti Raju, 2024. "The dynamics of natural language processing and text mining under emerging artificial intelligence techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4512-4526, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shrutika Mishra & A. R. Tripathi, 2021. "AI business model: an integrative business approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-21, December.
- Chen, Pengyu & Chu, Zhongzhu & Zhao, Miao, 2024. "The Road to corporate sustainability: The importance of artificial intelligence," Technology in Society, Elsevier, vol. 76(C).
- Zhisheng Chen, 2023. "Artificial Intelligence-Virtual Trainer: Innovative Didactics Aimed at Personalized Training Needs," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 2007-2025, June.
- Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
- Gerda Zigiene & Egidijus Rybakovas & Rimgaile Vaitkiene, 2020. "Challenges in Applying Artificial Intelligence for Supply Chain Risk Management," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 299-318.
- Steve J. Bickley & Alison Macintyre & Benno Torgler, 2021. "Artificial Intelligence and Big Data in Sustainable Entrepreneurship," CREMA Working Paper Series 2021-11, Center for Research in Economics, Management and the Arts (CREMA).
- Mónica Santana & Mirta Díaz-Fernández, 2023. "Competencies for the artificial intelligence age: visualisation of the state of the art and future perspectives," Review of Managerial Science, Springer, vol. 17(6), pages 1971-2004, August.
- Omar H. Fares & Irfan Butt & Seung Hwan Mark Lee, 2023. "Utilization of artificial intelligence in the banking sector: a systematic literature review," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 28(4), pages 835-852, December.
- Malik, Ashish & De Silva, M.T. Thedushika & Budhwar, Pawan & Srikanth, N.R., 2021. "Elevating talents' experience through innovative artificial intelligence-mediated knowledge sharing: Evidence from an IT-multinational enterprise," Journal of International Management, Elsevier, vol. 27(4).
- Neştian Andrei Ștefan & Tiţă SilviuMihail & Guţă Alexandra Luciana, 2020. "Incorporating artificial intelligence in knowledge creation processes in organizations," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 14(1), pages 597-606, July.
- Gerda Žigienė & Egidijus Rybakovas & Rimgailė Vaitkienė & Vaidas Gaidelys, 2022. "Setting the Grounds for the Transition from Business Analytics to Artificial Intelligence in Solving Supply Chain Risk," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
More about this item
Keywords
machine learning; spam detection; natural language processing; metaheuristics algorithm; swarm intelligence; artificial intelligence; sine cosine algorithm; optimization; classification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4173-:d:966292. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.