IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i9d10.1007_s13198-024-02468-8.html
   My bibliography  Save this article

The dynamics of natural language processing and text mining under emerging artificial intelligence techniques

Author

Listed:
  • U. M. Fernandes Dimlo

    (Sreyas Institute of Engineering and Technology)

  • V. Rupesh

    (Department of IT Malla Reddy University)

  • Yeligeti Raju

    (Vignana Bharathi Institute of Technology (Autonomous))

Abstract

In the contemporary era, with the emergence of distributed computing and storage facilities, there has been an increase in the creation of textual data. The invention of the Internet of Things (IoT) and its use cases also led to the creation of big data in textual corpora. At the same time, there are emerging Artificial Intelligence (AI) techniques for processing data in unstructured format. In this context, an important research question is how Natural Language Processing (NLP) and text mining cope with emerging AI techniques. This paper investigates the hypothesis that “NLP and text mining play an increased role in emerging AI techniques.” The investigation uses a dual approach: a literature review and an empirical study. Different aspects of the study, including data science approaches covering AI techniques, are investigated. NLP and text mining are indispensable for meaningful AI outcomes in solving different real-world problems. This paper sheds light on the investigations made and paves the way for exciting future research into utilizing AI along with NLP and text mining. It has covered the research reflecting the dynamics of natural language processing and text mining under emerging artificial intelligence techniques.

Suggested Citation

  • U. M. Fernandes Dimlo & V. Rupesh & Yeligeti Raju, 2024. "The dynamics of natural language processing and text mining under emerging artificial intelligence techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4512-4526, September.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02468-8
    DOI: 10.1007/s13198-024-02468-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02468-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02468-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su Jin Choi & So Won Choi & Jong Hyun Kim & Eul-Bum Lee, 2021. "AI and Text-Mining Applications for Analyzing Contractor’s Risk in Invitation to Bid (ITB) and Contracts for Engineering Procurement and Construction (EPC) Projects," Energies, MDPI, vol. 14(15), pages 1-28, July.
    2. Israel Griol-Barres & Sergio Milla & Antonio Cebrián & Huaan Fan & Jose Millet, 2020. "Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    3. Nebojsa Bacanin & Miodrag Zivkovic & Catalin Stoean & Milos Antonijevic & Stefana Janicijevic & Marko Sarac & Ivana Strumberger, 2022. "Application of Natural Language Processing and Machine Learning Boosted with Swarm Intelligence for Spam Email Filtering," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    4. Sheth, Jagdish & Kellstadt, Charles H., 2021. "Next frontiers of research in data driven marketing: Will techniques keep up with data tsunami?," Journal of Business Research, Elsevier, vol. 125(C), pages 780-784.
    5. Venkatesh Shankar & Sohil Parsana, 2022. "An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1324-1350, November.
    6. Xiao Zhou & Lu Huang & Yi Zhang & Miaomiao Yu, 2019. "A hybrid approach to detecting technological recombination based on text mining and patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 699-737, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyundong Nam & Taewoo Nam, 2021. "Exploring Strategic Directions of Pandemic Crisis Management: A Text Analysis of World Economic Forum COVID-19 Reports," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    2. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    3. Schauerte, Nico & Becker, Maren & Imschloss, Monika & Wichmann, Julian R.K. & Reinartz, Werner J., 2023. "The managerial relevance of marketing science: Properties and genesis," International Journal of Research in Marketing, Elsevier, vol. 40(4), pages 801-822.
    4. Blasco-Arcas, Lorena & Lee, Hsin-Hsuan Meg & Kastanakis, Minas N. & Alcañiz, Mariano & Reyes-Menendez, Ana, 2022. "The role of consumer data in marketing: A research agenda," Journal of Business Research, Elsevier, vol. 146(C), pages 436-452.
    5. Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    6. Marija Z. Ivanović & Đorđe Nedeljković & Zoran Stojadinović & Dejan Marinković & Nenad Ivanišević & Nevena Simić, 2022. "Detection and In-Depth Analysis of Causes of Delay in Construction Projects: Synergy between Machine Learning and Expert Knowledge," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    7. Alin-Gabriel Vaduva & Simona-Vasilica Oprea & Dragos-Catalin Barbu, 2023. "Understanding Customers' Opinion using Web Scraping and Natural Language Processing," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 537-544, August.
    8. Islam, Towhidul & Meade, Nigel & Carson, Richard T. & Louviere, Jordan J. & Wang, Juan, 2022. "The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures," Journal of Business Research, Elsevier, vol. 151(C), pages 324-338.
    9. Nigam, Achint & Dewani, Prem & Behl, Abhishek & Pereira, Vijay, 2022. "Consumer’s response to conditional promotions in retailing: An empirical inquiry," Journal of Business Research, Elsevier, vol. 144(C), pages 751-763.
    10. Ebadi, Ashkan & Auger, Alain & Gauthier, Yvan, 2022. "Detecting emerging technologies and their evolution using deep learning and weak signal analysis," Journal of Informetrics, Elsevier, vol. 16(4).
    11. Lijie Feng & Yuxiang Niu & Zhenfeng Liu & Jinfeng Wang & Ke Zhang, 2019. "Discovering Technology Opportunity by Keyword-Based Patent Analysis: A Hybrid Approach of Morphology Analysis and USIT," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
    12. Lu Huang & Yijie Cai & Erdong Zhao & Shengting Zhang & Yue Shu & Jiao Fan, 2022. "Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6733-6761, November.
    13. Na Xu & Xueqing Zhou & Chaoran Guo & Bai Xiao & Fei Wei & Yuting Hu, 2022. "Text Mining Applications in the Construction Industry: Current Status, Research Gaps, and Prospects," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    14. Andrea Mauro & Andrea Sestino & Andrea Bacconi, 2022. "Machine learning and artificial intelligence use in marketing: a general taxonomy," Italian Journal of Marketing, Springer, vol. 2022(4), pages 439-457, December.
    15. Ola Bareja-Wawryszuk & Tomasz Pajewski & Kübra Müge Çakaröz & Baki Kavas, 2022. "Changes in Consumer Behavior during the COVID-19 Pandemic: A Comparative Analysis between Polish and Turkish Consumers," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    16. De Keyser, Arne & Bart, Yakov & Gu, Xian & Liu, Stephanie Q. & Robinson, Stacey G. & Kannan, P.K., 2021. "Opportunities and challenges of using biometrics for business: Developing a research agenda," Journal of Business Research, Elsevier, vol. 136(C), pages 52-62.
    17. Dušan S. Radivojević & Ivan M. Lazović & Nikola S. Mirkov & Uzahir R. Ramadani & Dušan P. Nikezić, 2023. "A Comparative Evaluation of Self-Attention Mechanism with ConvLSTM Model for Global Aerosol Time Series Forecasting," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    18. Sangsung Park & Seongyong Choi & Sunghae Jun, 2021. "Bayesian Structure Learning and Visualization for Technology Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    19. Micus, Christian & Schramm, Simon & Boehm, Markus & Krcmar, Helmut, 2023. "Methods to analyze customer usage data in a product decision process:A systematic literature review," Operations Research Perspectives, Elsevier, vol. 10(C).
    20. Syrdal, Holly A. & Myers, Susan & Sen, Sandipan & Woodroof, Parker J. & McDowell, William C., 2023. "Influencer marketing and the growth of affiliates: The effects of language features on engagement behavior," Journal of Business Research, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02468-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.