IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3893-d947914.html
   My bibliography  Save this article

Some Technical Remarks on Negations of Discrete Probability Distributions and Their Information Loss

Author

Listed:
  • Ingo Klein

    (Department of Statistics and Econometrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Lange Gasse 20, D-90403 Nürnberg, Germany)

Abstract

Negation of a discrete probability distribution was introduced by Yager. To date, several papers have been published discussing generalizations, properties, and applications of negation. The recent work by Wu et al. gives an excellent overview of the literature and the motivation to deal with negation. Our paper focuses on some technical aspects of negation transformations. First, we prove that independent negations must be affine-linear. This fact was established by Batyrshin et al. as an open problem. Secondly, we show that repeated application of independent negations leads to a progressive loss of information (called monotonicity). In contrast to the literature, we try to obtain results not only for special but also for the general class of ϕ -entropies. In this general framework, we can show that results need to be proven only for Yager negation and can be transferred to the entire class of independent (=affine-linear) negations. For general ϕ -entropies with strictly concave generator function ϕ , we can show that the information loss increases separately for sequences of odd and even numbers of repetitions. By using a Lagrangian approach, this result can be extended, in the neighbourhood of the uniform distribution, to all numbers of repetition. For Gini, Shannon, Havrda–Charvát (Tsallis), Rényi and Sharma–Mittal entropy, we prove that the information loss has a global minimum of 0. For dependent negations, it is not easy to obtain analytical results. Therefore, we simulate the entropy distribution and show how different repeated negations affect Gini and Shannon entropy. The simulation approach has the advantage that the entire simplex of discrete probability vectors can be considered at once, rather than just arbitrarily selected probability vectors.

Suggested Citation

  • Ingo Klein, 2022. "Some Technical Remarks on Negations of Discrete Probability Distributions and Their Information Loss," Mathematics, MDPI, vol. 10(20), pages 1-26, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3893-:d:947914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaozhuan Gao & Yong Deng, 2019. "The generalization negation of probability distribution and its application in target recognition based on sensor fusion," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    2. Ildar Z. Batyrshin, 2021. "Contracting and Involutive Negations of Probability Distributions," Mathematics, MDPI, vol. 9(19), pages 1-11, September.
    3. Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hengtao Zhang & Guosheng Yin, 2021. "Response‐adaptive rerandomization," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1281-1298, November.
    2. Andrew Gelman & Daniel Lee & Jiqiang Guo, 2015. "Stan," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 530-543, October.
    3. Zuoxian Gan & Tao Feng & Min Yang, 2018. "Exploring the Effects of Car Ownership and Commuting on Subjective Well-Being: A Nationwide Questionnaire Study," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    4. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    5. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    6. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    7. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    8. Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    9. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    10. Schaarschmidt, Frank & Gerhard, Daniel & Vogel, Charlotte, 2017. "Simultaneous confidence intervals for comparisons of several multinomial samples," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 65-76.
    11. Eijffinger, Sylvester & Mahieu, Ronald & Raes, Louis, 2018. "Inferring hawks and doves from voting records," European Journal of Political Economy, Elsevier, vol. 51(C), pages 107-120.
    12. Martin Hernani Merino & Enver Gerald Tarazona Vargas & Antonieta Hamann Pastorino & José Afonso Mazzon, 2014. "Validation of Sustainable Development Practices Scale Using the Bayesian Approach to Item Response Theory," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 26(2), pages 147-162.
    13. repec:jss:jstsof:39:i12 is not listed on IDEAS
    14. Emmanuel Mensaklo & Chukiat Chaiboonsri & Kanchana Chokethaworn & Songsak Sriboonchitta, 2023. "Comparing Classical and Bayesian Panel Kink Regression Frameworks in Estimating the Impact of Economic Freedom on Economic Growth," Economies, MDPI, vol. 11(10), pages 1-24, October.
    15. Daniel W. Hill Jr., 2016. "Avoiding Obligation," Journal of Conflict Resolution, Peace Science Society (International), vol. 60(6), pages 1129-1158, September.
    16. Liguo Fei & Jun Xia & Yuqiang Feng & Luning Liu, 2019. "A novel method to determine basic probability assignment in Dempster–Shafer theory and its application in multi-sensor information fusion," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.
    17. Marisol Valencia Cárdenas & Juan Gabriel Vanegas López & Juan Carlos Correa Morales & Jorge Aníbal Restrepo Morales, 2017. "Comparing forecasts for tourism dynamics in Medellín, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 199-230, Enero - J.
    18. Mason Dyana P., 2017. "Measuring Latent Constructs in Nonprofit Surveys with Item Response Theory: The Example of Political Ideology," Nonprofit Policy Forum, De Gruyter, vol. 8(1), pages 91-110, January.
    19. Brett V. Benson & Joshua D. Clinton, 2016. "Assessing the Variation of Formal Military Alliances," Journal of Conflict Resolution, Peace Science Society (International), vol. 60(5), pages 866-898, August.
    20. Valencia Cárdenas, Marisol & Vanegas López, Juan Gabriel & Correa Morales, Juan Carlos & Restrepo Morales, Jorge Aníbal, 2016. "Comparación de pronósticos para la dinámica del turismo en Medellín, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 199-230, December.
    21. Mark David Nieman, 2016. "Moments in time: Temporal patterns in the effect of democracy and trade on conflict," Conflict Management and Peace Science, Peace Science Society (International), vol. 33(3), pages 273-293, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3893-:d:947914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.