IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v12y2024i9p173.html
   My bibliography  Save this article

Bayesian Perspective in the Selection of Bean Genotypes

Author

Listed:
  • Tâmara Rebecca A. de Oliveira
  • Moysés Nascimento
  • Paulo R. Santos
  • Kleyton Danilo S. Costa
  • Thalyson V. Lima
  • Gabriela Karoline Michelon
  • Luis Claudio de Faria
  • Antonio F. Costa
  • José Wilson da Silva
  • Geraldo A. Gravina
  • Gustavo Hugo F. de Oliveira

Abstract

Changes in the relative performance of genotypes have made it necessary for more in-depth investigations to be carried out through reliable analyses of adaptability and stability. The present study was conducted to compare the efficiency of different informative priors in the Bayesian method of Eberhart & Russel with frequentist methods. Fifteen black-bean genotypes from the municipalities of Belém do São Francisco and Petrolina (PE, Brazil) were evaluated in 2011 and 2012 in a randomized-block design with three replicates. Eberhart & Russel’s methodology was applied using the GENES software and the Bayesian procedure using the R software through the MCMCregress function of the MCMCpack package. The quality of Bayesian analysis differed according to the a priori information entered in the model. The Bayesian approach using frequentist analysis had greater accuracy in the estimate of adaptability and stability, where model 1 which uses the a priori information, was the most suitable to obtain reliable estimates according to the BayesFactor function. The inference, using information from previous studies, showed to be imprecise and equivalent to the linear-model methodology. In addition, it was realized that the input of a priori information is important because it increases the quality of the adjustment of the model.

Suggested Citation

  • Tâmara Rebecca A. de Oliveira & Moysés Nascimento & Paulo R. Santos & Kleyton Danilo S. Costa & Thalyson V. Lima & Gabriela Karoline Michelon & Luis Claudio de Faria & Antonio F. Costa & José Wilso, 2024. "Bayesian Perspective in the Selection of Bean Genotypes," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 12(9), pages 173-173, April.
  • Handle: RePEc:ibn:jasjnl:v:12:y:2024:i:9:p:173
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/0/0/43463/45588
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/0/43463
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    2. Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoomi Kim & Katsuya Tanaka & Shunji Matsuoka, 2017. "Institutional Mechanisms and the Consequences of International Environmental Agreements," Global Environmental Politics, MIT Press, vol. 17(1), pages 77-98, February.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    4. Hengtao Zhang & Guosheng Yin, 2021. "Response‐adaptive rerandomization," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1281-1298, November.
    5. Atahan Afsar; José Elías Gallegos; Richard Jaimes; Edgar Silgado Gómez & José Elías Gallegos & Richard Jaimes & Edgar Silgado Gómez, 2020. "Reconciling Empirics and Theory: The Behavioral Hybrid New Keynesian Model," Vniversitas Económica, Universidad Javeriana - Bogotá, vol. 0(0), pages 1-41, December.
    6. Andrew Gelman & Daniel Lee & Jiqiang Guo, 2015. "Stan," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 530-543, October.
    7. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    8. Zuoxian Gan & Tao Feng & Min Yang, 2018. "Exploring the Effects of Car Ownership and Commuting on Subjective Well-Being: A Nationwide Questionnaire Study," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    9. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    10. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    11. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    12. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    13. Michael T. Owyang, 2002. "Modeling Volcker as a non-absorbing state: agnostic identification of a Markov-switching VAR," Working Papers 2002-018, Federal Reserve Bank of St. Louis.
    14. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    15. Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    16. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    17. Feng Dai & Baumgartner Richard & Svetnik Vladimir, 2018. "A Bayesian Framework for Estimating the Concordance Correlation Coefficient Using Skew-elliptical Distributions," The International Journal of Biostatistics, De Gruyter, vol. 14(1), pages 1-8, May.
    18. Keane, Michael & Stavrunova, Olena, 2016. "Adverse selection, moral hazard and the demand for Medigap insurance," Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.
    19. Schaarschmidt, Frank & Gerhard, Daniel & Vogel, Charlotte, 2017. "Simultaneous confidence intervals for comparisons of several multinomial samples," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 65-76.
    20. He, Yongda & Lin, Boqiang, 2018. "Time-varying effects of cyclical fluctuations in China's energy industry on the macro economy and carbon emissions," Energy, Elsevier, vol. 155(C), pages 1102-1112.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:12:y:2024:i:9:p:173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.