Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- Hongwei Zhao & Naveed N Merchant & Alyssa McNulty & Tiffany A Radcliff & Murray J Cote & Rebecca S B Fischer & Huiyan Sang & Marcia G Ory, 2021. "COVID-19: Short term prediction model using daily incidence data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-14, April.
- B. F. Finkenstädt & B. T. Grenfell, 2000. "Time series modelling of childhood diseases: a dynamical systems approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 187-205.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
- Denis Valle & James Clark, 2013. "Improving the Modeling of Disease Data from the Government Surveillance System: A Case Study on Malaria in the Brazilian Amazon," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
- Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
- Daniel P Word & James K Young & Derek A T Cummings & Sopon Iamsirithaworn & Carl D Laird, 2013. "Interior-Point Methods for Estimating Seasonal Parameters in Discrete-Time Infectious Disease Models," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
- Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
- Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.
- Imdad, Kashif & Sahana, Mehebub & Rana, Md Juel & Haque, Ismail & Patel, Priyank Pravin & Pramanik, Malay, 2020. "The COVID-19 pandemic's footprint in India: An assessment on the district-level susceptibility and vulnerability," MPRA Paper 100727, University Library of Munich, Germany.
- Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
- H. J. Whitaker & C. P. Farrington, 2004. "Infections with Varying Contact Rates: Application to Varicella," Biometrics, The International Biometric Society, vol. 60(3), pages 615-623, September.
- Bernard Cazelles & Clara Champagne & Joseph Dureau, 2018. "Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-26, August.
- Caroline Chuard & Hannes Schwandt & Alexander D. Becker & Masahiko Haraguchi, 2022.
"Economic vs. Epidemiological Approaches to Measuring the Human Capital Impacts of Infectious Disease Elimination,"
NBER Working Papers
30202, National Bureau of Economic Research, Inc.
- Chuard, Caroline & Schwandt, Hannes & Becker, Alex & Haraguchi, Masahiko, 2022. "Economic vs. Epidemiological Approaches to Measuring the Human Capital Impacts of Infectious Disease Elimination," IZA Discussion Papers 15420, Institute of Labor Economics (IZA).
- Eryarsoy, Enes & Delen, Dursun & Davazdahemami, Behrooz & Topuz, Kazim, 2021. "A novel diffusion-based model for estimating cases, and fatalities in epidemics: The case of COVID-19," Journal of Business Research, Elsevier, vol. 124(C), pages 163-178.
- Hildie Leung & Daniel T. L. Shek & Diya Dou, 2021. "Evaluation of Service-Learning in Project WeCan under COVID-19 in a Chinese Context," IJERPH, MDPI, vol. 18(7), pages 1-17, March.
- Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021.
"Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures,"
Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.
- Bonacini, Luca & Gallo, Giovanni & Patriarca, Fabrizio, 2020. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," GLO Discussion Paper Series 534 [pre.], Global Labor Organization (GLO).
More about this item
Keywords
artificial intelligence; balance model; CIR model; COVID-19; forecasting; modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3725-:d:938847. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.