IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006211.html
   My bibliography  Save this article

Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models

Author

Listed:
  • Bernard Cazelles
  • Clara Champagne
  • Joseph Dureau

Abstract

The spread of disease through human populations is complex. The characteristics of disease propagation evolve with time, as a result of a multitude of environmental and anthropic factors, this non-stationarity is a key factor in this huge complexity. In the absence of appropriate external data sources, to correctly describe the disease propagation, we explore a flexible approach, based on stochastic models for the disease dynamics, and on diffusion processes for the parameter dynamics. Using such a diffusion process has the advantage of not requiring a specific mathematical function for the parameter dynamics. Coupled with particle MCMC, this approach allows us to reconstruct the time evolution of some key parameters (average transmission rate for instance). Thus, by capturing the time-varying nature of the different mechanisms involved in disease propagation, the epidemic can be described. Firstly we demonstrate the efficiency of this methodology on a toy model, where the parameters and the observation process are known. Applied then to real datasets, our methodology is able, based solely on simple stochastic models, to reconstruct complex epidemics, such as flu or dengue, over long time periods. Hence we demonstrate that time-varying parameters can improve the accuracy of model performances, and we suggest that our methodology can be used as a first step towards a better understanding of a complex epidemic, in situation where data is limited and/or uncertain.Author summary: As our world becomes more and more globalized, infectious disease poses an ever-increasing threat to human health. The multitude of environmental and behavioral factors, which account for the spread of infectious diseases, are ever-evolving and thus infectious diseases propagation is complex.

Suggested Citation

  • Bernard Cazelles & Clara Champagne & Joseph Dureau, 2018. "Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-26, August.
  • Handle: RePEc:plo:pcbi00:1006211
    DOI: 10.1371/journal.pcbi.1006211
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006211
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006211&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam J Kucharski & Kin O Kwok & Vivian W I Wei & Benjamin J Cowling & Jonathan M Read & Justin Lessler & Derek A Cummings & Steven Riley, 2014. "The Contribution of Social Behaviour to the Transmission of Influenza A in a Human Population," PLOS Pathogens, Public Library of Science, vol. 10(6), pages 1-8, June.
    2. Bhadra, Anindya & Ionides, Edward L. & Laneri, Karina & Pascual, Mercedes & Bouma, Menno & Dhiman, Ramesh C., 2011. "Malaria in Northwest India: Data Analysis via Partially Observed Stochastic Differential Equation Models Driven by Lévy Noise," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 440-451.
    3. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    4. Daniel Adyro Martínez-Bello & Antonio López-Quílez & Alexander Torres-Prieto, 2017. "Bayesian dynamic modeling of time series of dengue disease case counts," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-19, July.
    5. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    6. B. F. Finkenstädt & B. T. Grenfell, 2000. "Time series modelling of childhood diseases: a dynamical systems approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 187-205.
    7. Karina Laneri & Anindya Bhadra & Edward L Ionides & Menno Bouma & Ramesh C Dhiman & Rajpal S Yadav & Mercedes Pascual, 2010. "Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest India," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Valle & James Clark, 2013. "Improving the Modeling of Disease Data from the Government Surveillance System: A Case Study on Malaria in the Brazilian Amazon," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    2. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    3. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    4. Wan Yang & Liang Wen & Shen-Long Li & Kai Chen & Wen-Yi Zhang & Jeffrey Shaman, 2017. "Geospatial characteristics of measles transmission in China during 2005−2014," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-21, April.
    5. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    6. Rachel E. Baker & Ayesha S. Mahmud & C. Jessica E. Metcalf, 2018. "Dynamic response of airborne infections to climate change: predictions for varicella," Climatic Change, Springer, vol. 148(4), pages 547-560, June.
    7. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    8. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    10. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    11. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    12. World Bank, 2024. "Toward a One Health Approach in Sudan," World Bank Publications - Reports 41580, The World Bank Group.
    13. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    14. Rowe, Francisco & Mahony, Michael & Graells-Garrido, Eduardo & Rango, Marzia & Sievers, Niklas, 2021. "Using Twitter to Track Immigration Sentiment During Early Stages of the COVID-19 Pandemic," SocArXiv pc3za_v1, Center for Open Science.
    15. Ongolo, Symphorien & Giessen, Lukas & Karsenty, Alain & Tchamba, Martin & Krott, Max, 2021. "Forestland policies and politics in Africa: Recent evidence and new challenges," Forest Policy and Economics, Elsevier, vol. 127(C).
    16. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    17. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    18. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    19. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.