Joint Models for Incomplete Longitudinal Data and Time-to-Event Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
- Christos Thomadakis & Loukia Meligkotsidou & Nikos Pantazis & Giota Touloumi, 2019. "Longitudinal and time‐to‐drop‐out joint models can lead to seriously biased estimates when the drop‐out mechanism is at random," Biometrics, The International Biometric Society, vol. 75(1), pages 58-68, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brenden Bishop & Minjeong Jeon, 2016. "Book Review," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1164-1167, December.
- Morten Overgaard & Stefan Nygaard Hansen, 2021. "On the assumption of independent right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1234-1255, December.
- Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
- Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Kott Phillip S. & Liao Dan, 2018. "Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)," Journal of Official Statistics, Sciendo, vol. 34(1), pages 107-120, March.
- Caroline Beunckens & Cristina Sotto & Geert Molenberghs & Geert Verbeke, 2009. "A multifaceted sensitivity analysis of the Slovenian public opinion survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 171-196, May.
- Marco Doretti & Sara Geneletti & Elena Stanghellini, 2018.
"Missing Data: A Unified Taxonomy Guided by Conditional Independence,"
International Statistical Review, International Statistical Institute, vol. 86(2), pages 189-204, August.
- Doretti, Marco & Geneletti, Sara & Stanghellini, Elena, 2018. "Missing data: a unified taxonomy guided by conditional independence," LSE Research Online Documents on Economics 87227, London School of Economics and Political Science, LSE Library.
- Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.
- Andrew T. Karl & Yan Yang & Sharon L. Lohr, 2013. "A Correlated Random Effects Model for Nonignorable Missing Data in Value-Added Assessment of Teacher Effects," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 577-603, December.
- Rianne Margaretha Schouten & Gerko Vink, 2021. "The Dance of the Mechanisms: How Observed Information Influences the Validity of Missingness Assumptions," Sociological Methods & Research, , vol. 50(3), pages 1243-1258, August.
- Daniel, Rhian M. & Kenward, Michael G., 2012. "A method for increasing the robustness of multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1624-1643.
- Geert Molenberghs, 2012. "Discussion Contribution to 091037PR4 (Ghosh, Taylor, and Sargent)," Biometrics, The International Biometric Society, vol. 68(1), pages 233-235, March.
- Janicki, Ryan & Malec, Donald, 2013. "A Bayesian model averaging approach to analyzing categorical data with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 600-614.
- Kim, Seongyong & Park, Yousung & Kim, Daeyoung, 2015. "On missing-at-random mechanism in two-way incomplete contingency tables," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 196-203.
- Wan-Lun Wang & Min Liu & Tsung-I Lin, 2017. "Robust skew-t factor analysis models for handling missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 649-672, November.
- Anna Ivanova & Geert Molenberghs & Geert Verbeke, 2017. "Mechanism for missing data incorporated in joint modelling of ordinal responses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 1049-1064, November.
- D. M. Farewell & C. Huang & V. Didelez, 2017. "Ignorability for general longitudinal data," Biometrika, Biometrika Trust, vol. 104(2), pages 317-326.
- Yuzhe Liu & Vanathi Gopalakrishnan, 2017. "An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data," Data, MDPI, vol. 2(1), pages 1-15, January.
- Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
- Margarita Moreno-Betancur & Grégoire Rey & Aurélien Latouche, 2015. "Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure," Biometrics, The International Biometric Society, vol. 71(2), pages 498-507, June.
More about this item
Keywords
missing data; joint model; missing at random; missing not at random; shared parameter model; longitudinal data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3656-:d:934403. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.