IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i2p317-326..html
   My bibliography  Save this article

Ignorability for general longitudinal data

Author

Listed:
  • D. M. Farewell
  • C. Huang
  • V. Didelez

Abstract

SummaryLikelihood factors that can be disregarded for inference are termed ignorable. We demonstrate that close ties exist between ignorability and identification of causal effects by covariate adjustment. A graphical condition, stability, plays a role analogous to that of missingness at random, but is applicable to general longitudinal data. Our formulation of ignorability does not depend on any notion of missing data, so is appealing in situations where missing data may not actually exist. Several examples illustrate how stability may be assessed.

Suggested Citation

  • D. M. Farewell & C. Huang & V. Didelez, 2017. "Ignorability for general longitudinal data," Biometrika, Biometrika Trust, vol. 104(2), pages 317-326.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:2:p:317-326.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx020
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
    2. Liuquan Sun & Xinyuan Song & Jie Zhou & Lei Liu, 2012. "Joint Analysis of Longitudinal Data With Informative Observation Times and a Dependent Terminal Event," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 688-700, June.
    3. Fabrizia Mealli & Donald B. Rubin, 2015. "Clarifying missing at random and related definitions, and implications when coupled with exchangeability," Biometrika, Biometrika Trust, vol. 102(4), pages 995-1000.
    4. Lindsey, J. K., 1999. "Models for Repeated Measurements," OUP Catalogue, Oxford University Press, edition 2, number 9780198505594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D M Farewell & R M Daniel & S R Seaman, 2022. "Missing at random: a stochastic process perspective [Contribution to the discussion of ‘Longitudinal data with dropout: Objectives, assumptions and a proposal’ by P. J. Diggle, D. Farewell and R. H," Biometrika, Biometrika Trust, vol. 109(1), pages 227-241.
    2. Daniel Commenges, 2019. "Dealing with death when studying disease or physiological marker: the stochastic system approach to causality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 381-405, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Doretti & Sara Geneletti & Elena Stanghellini, 2018. "Missing Data: A Unified Taxonomy Guided by Conditional Independence," International Statistical Review, International Statistical Institute, vol. 86(2), pages 189-204, August.
    2. Hongyuan Cao & Mathew M. Churpek & Donglin Zeng & Jason P. Fine, 2015. "Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1187-1196, September.
    3. Gianni Betti & Antonella D’Agostino & Laura Neri, 2002. "Panel regression models for measuring multidimensional poverty dynamics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(3), pages 359-369, October.
    4. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    5. Brenden Bishop & Minjeong Jeon, 2016. "Book Review," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1164-1167, December.
    6. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    7. Morten Overgaard & Stefan Nygaard Hansen, 2021. "On the assumption of independent right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1234-1255, December.
    8. Fei Wang & Yuhao Deng, 2023. "Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at Random," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    9. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    10. Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    11. Ulf Böckenholt, 2003. "Analysing state dependences in emotional experiences by dynamic count data models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(2), pages 213-226, May.
    12. Kott Phillip S. & Liao Dan, 2018. "Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)," Journal of Official Statistics, Sciendo, vol. 34(1), pages 107-120, March.
    13. P. J. Lindsey & J. Kaufmann, 2004. "Analysis of a longitudinal ordinal response clinical trial using dynamic models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(3), pages 523-537, August.
    14. Caroline Beunckens & Cristina Sotto & Geert Molenberghs & Geert Verbeke, 2009. "A multifaceted sensitivity analysis of the Slovenian public opinion survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 171-196, May.
    15. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    16. Janie Coulombe & Erica E. M. Moodie & Robert W. Platt, 2021. "Weighted regression analysis to correct for informative monitoring times and confounders in longitudinal studies," Biometrics, The International Biometric Society, vol. 77(1), pages 162-174, March.
    17. Nadia Solaro & Pier Ferrari, 2007. "Robustness of Parameter Estimation Procedures in Multilevel Models When Random Effects are MEP Distributed," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(1), pages 51-67, June.
    18. Devin S. Johnson & Jennifer A. Hoeting, 2003. "Autoregressive Models for Capture-Recapture Data: A Bayesian Approach," Biometrics, The International Biometric Society, vol. 59(2), pages 341-350, June.
    19. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.
    20. Marta Nai Ruscone & Daniel Fernández, 2021. "Dynamics of HDI Index: Temporal Dependence Based on D-vine Copulas Model for Three-Way Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(2), pages 563-593, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:2:p:317-326.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.