A method for increasing the robustness of multiple imputation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2011.10.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Anastasios A. Tsiatis & Marie Davidian & Weihua Cao, 2011. "Improved Doubly Robust Estimation When Data Are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout," Biometrics, The International Biometric Society, vol. 67(2), pages 536-545, June.
- Zhiqiang Tan, 2010. "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, Biometrika Trust, vol. 97(3), pages 661-682.
- Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
- James R. Carpenter & Michael G. Kenward & Stijn Vansteelandt, 2006. "A comparison of multiple imputation and doubly robust estimation for analyses with missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 571-584, July.
- Stijn Vansteelandt & Andrea Rotnitzky & James Robins, 2007. "Estimation of Regression Models for the Mean of Repeated Outcomes Under Nonignorable Nonmonotone Nonresponse," Biometrika, Biometrika Trust, vol. 94(4), pages 841-860.
- Patrick Royston, 2004. "Multiple imputation of missing values," Stata Journal, StataCorp LP, vol. 4(3), pages 227-241, September.
- Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
- Creemers, An & Aerts, Marc & Hens, Niel & Molenberghs, Geert, 2012. "A nonparametric approach to weighted estimating equations for regression analysis with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 100-113, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Mimi & Hu, Qingpei & Xie, Min & Yu, Dan, 2014. "Lower confidence limit for reliability based on grouped data using a quantile-filling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 96-111.
- A.Y. Kombo & H. Mwambi & G. Molenberghs, 2017. "Multiple imputation for ordinal longitudinal data with monotone missing data patterns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 270-287, January.
- Manuel Gomes & Nils Gutacker & Chris Bojke & Andrew Street, 2016. "Addressing Missing Data in Patient‐Reported Outcome Measures (PROMS): Implications for the Use of PROMS for Comparing Provider Performance," Health Economics, John Wiley & Sons, Ltd., vol. 25(5), pages 515-528, May.
- Manuel Gomes & Nils Gutacker & Chris Bojke & Andrew Street, 2014. "Addressing missing data in patient-reported outcome measures (PROMs): implications for comparing provider performance," Working Papers 101cherp, Centre for Health Economics, University of York.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huiming Lin & Bo Fu & Guoyou Qin & Zhongyi Zhu, 2017. "Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts," Biometrics, The International Biometric Society, vol. 73(4), pages 1132-1139, December.
- Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
- Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
- Han, Peisong & Song, Peter X.-K. & Wang, Lu, 2015. "Achieving semiparametric efficiency bound in longitudinal data analysis with dropouts," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 59-70.
- Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
- Uysal, S. Derya, 2013. "Doubly Robust Estimation of Causal Effects with Multivalued Treatments," Economics Series 297, Institute for Advanced Studies.
- Satoshi Hattori & Masayuki Henmi, 2014. "Stratified doubly robust estimators for the average causal effect," Biometrics, The International Biometric Society, vol. 70(2), pages 270-277, June.
- Hao Cheng & Ying Wei, 2018. "A fast imputation algorithm in quantile regression," Computational Statistics, Springer, vol. 33(4), pages 1589-1603, December.
- Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
- Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
- Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
- Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022.
"Semiparametric Single-Index Estimation for Average Treatment Effects,"
Papers
2206.08503, arXiv.org, revised Apr 2024.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Monash Econometrics and Business Statistics Working Papers 10/22, Monash University, Department of Econometrics and Business Statistics.
- Donatien Eze Eze, 2019. "Microfinance programs and domestic violence in northern Cameroon; the case of the Familial Rural Income Improvement Program," Review of Economics of the Household, Springer, vol. 17(3), pages 947-967, September.
- Karel Vermeulen & Stijn Vansteelandt, 2015. "Bias-Reduced Doubly Robust Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1024-1036, September.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
- Słoczyński, Tymon & Wooldridge, Jeffrey M., 2018.
"A General Double Robustness Result For Estimating Average Treatment Effects,"
Econometric Theory, Cambridge University Press, vol. 34(1), pages 112-133, February.
- Sloczynski, Tymon & Wooldridge, Jeffrey M., 2014. "A General Double Robustness Result for Estimating Average Treatment Effects," IZA Discussion Papers 8084, Institute of Labor Economics (IZA).
- Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.
- Ashkan Ertefaie & Nima S. Hejazi & Mark J. van der Laan, 2023. "Nonparametric inverse‐probability‐weighted estimators based on the highly adaptive lasso," Biometrics, The International Biometric Society, vol. 79(2), pages 1029-1041, June.
More about this item
Keywords
Doubly robust estimation; Missing data; Multiple imputation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1624-1643. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.