Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)
Author
Abstract
Suggested Citation
DOI: 10.1515/jos-2018-0006
Download full text from publisher
References listed on IDEAS
- Kott, Phillip S. & Chang, Ted, 2010. "Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1265-1275.
- Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
- repec:mpr:mprres:4937 is not listed on IDEAS
- Ted Chang & Phillip S. Kott, 2008. "Using calibration weighting to adjust for nonresponse under a plausible model," Biometrika, Biometrika Trust, vol. 95(3), pages 555-571.
- repec:mpr:mprres:4780 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
- Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
- Kajal Dihidar, 2014. "Estimating population mean with missing data in unequal probability sampling," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 369-388, June.
- M. Giovanna Ranalli & Alina Matei & Andrea Neri, 2023. "Generalised calibration with latent variables for the treatment of unit nonresponse in sample surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 169-195, March.
- Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 183-200, June.
- Brick J. Michael, 2013. "Unit Nonresponse and Weighting Adjustments: A Critical Review," Journal of Official Statistics, Sciendo, vol. 29(3), pages 329-353, June.
- Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
- Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
- Yekun Qin & Shanminhui Yin & Fang Liu, 2024. "Navigating Criminal Responsibility in the Digital Marketplace: Implications of Network-Neutral Help Behavior and Beyond-5G Networks in E-Commerce Transactions," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 10667-10695, September.
- Brenden Bishop & Minjeong Jeon, 2016. "Book Review," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1164-1167, December.
- Christopher L. Foote & Tyler Hounshell & William D. Nordhaus & Douglas Rivers & Pamela Torola, 2021.
"Measuring the US Employment Situation Using Online Panels: The Yale Labor Survey,"
Current Policy Perspectives
93422, Federal Reserve Bank of Boston.
- Christopher Foote & Tyler Hounshell & William D. Nordhaus & Douglas Rivers & Pamela Torola, 2021. "Measuring the U.S. Employment Situation Using Online Panels: The Yale Labor Survey," Cowles Foundation Discussion Papers 2282, Cowles Foundation for Research in Economics, Yale University.
- Maciej Berȩsewicz & Dagmara Nikulin, 2021. "Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 667-690, June.
- Morten Overgaard & Stefan Nygaard Hansen, 2021. "On the assumption of independent right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1234-1255, December.
- Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
- Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
- Alexandra Filindra & Melanie Kolbe, 2022. "Latinx identification with whiteness: What drives it, and what effects does it have on political preferences?," Social Science Quarterly, Southwestern Social Science Association, vol. 103(6), pages 1424-1439, November.
- Caroline Beunckens & Cristina Sotto & Geert Molenberghs & Geert Verbeke, 2009. "A multifaceted sensitivity analysis of the Slovenian public opinion survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 171-196, May.
- Marco Doretti & Sara Geneletti & Elena Stanghellini, 2018.
"Missing Data: A Unified Taxonomy Guided by Conditional Independence,"
International Statistical Review, International Statistical Institute, vol. 86(2), pages 189-204, August.
- Doretti, Marco & Geneletti, Sara & Stanghellini, Elena, 2018. "Missing data: a unified taxonomy guided by conditional independence," LSE Research Online Documents on Economics 87227, London School of Economics and Political Science, LSE Library.
- Heyna, Philipp, 2024. "Can TikTok Drive Support for Populist Radical Right Parties? Causal Evidence From Germany," OSF Preprints yju9n, Center for Open Science.
More about this item
Keywords
Model variable; calibration variable; weight-adjustment function; selection bias;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:34:y:2018:i:1:p:107-120:n:6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.