IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v50y2021i3p1243-1258.html
   My bibliography  Save this article

The Dance of the Mechanisms: How Observed Information Influences the Validity of Missingness Assumptions

Author

Listed:
  • Rianne Margaretha Schouten
  • Gerko Vink

Abstract

Missing data in scientific research go hand in hand with assumptions about the nature of the missingness. When dealing with missing values, a set of beliefs has to be formulated about the extent to which the observed data may also hold for the missing parts of the data. It is vital that the validity of these missingness assumptions is verified, tested, and that assumptions are adjusted when necessary. In this article, we demonstrate how observed data structures could a priori indicate whether it is likely that our beliefs about the missingness can be trusted. To this end, we simulate complete data and generate missing values according several types of MCAR, MAR, and MNAR mechanisms. We demonstrate that in scenarios where the data correlations are either low or very substantial, strictly different mechanisms yield equivalent statistical inferences. In addition, we show that the choice of quantity of scientific interest together with the distribution of the nonresponse govern the validity of the missingness assumptions.

Suggested Citation

  • Rianne Margaretha Schouten & Gerko Vink, 2021. "The Dance of the Mechanisms: How Observed Information Influences the Validity of Missingness Assumptions," Sociological Methods & Research, , vol. 50(3), pages 1243-1258, August.
  • Handle: RePEc:sae:somere:v:50:y:2021:i:3:p:1243-1258
    DOI: 10.1177/0049124118799376
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124118799376
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124118799376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.Y. Kombo & H. Mwambi & G. Molenberghs, 2017. "Multiple imputation for ordinal longitudinal data with monotone missing data patterns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 270-287, January.
    2. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    3. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    4. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    5. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    6. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    7. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    8. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    9. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    10. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    11. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    12. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    13. Tsai, Tsung-Han, 2016. "A Bayesian Approach to Dynamic Panel Models with Endogenous Rarely Changing Variables," Political Science Research and Methods, Cambridge University Press, vol. 4(3), pages 595-620, September.
    14. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    15. Manuel S. González Canché, 2017. "Financial Benefits of Rapid Student Loan Repayment: An Analytic Framework Employing Two Decades of Data," The ANNALS of the American Academy of Political and Social Science, , vol. 671(1), pages 154-182, May.
    16. Annisa Rahmalia & Michael Holton Price & Yovita Hartantri & Bachti Alisjahbana & Rudi Wisaksana & Reinout van Crevel & Andre J A M van der Ven, 2019. "Are there differences in HIV retention in care between female and male patients in Indonesia? A multi-state analysis of a retrospective cohort study," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-17, June.
    17. Lara Lopez & Fernando L. Vázquez & Ángela J. Torres & Patricia Otero & Vanessa Blanco & Olga Díaz & Mario Páramo, 2020. "Long-Term Effects of a Cognitive Behavioral Conference Call Intervention on Depression in Non-Professional Caregivers," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    18. Sabine Zinn & Michael Bayer, 2021. "Time Spent on School-Related Activities at Home during the Pandemic: A Longitudinal Analysis of Social Group Inequality among Secondary School Students," SOEPpapers on Multidisciplinary Panel Data Research 1132, DIW Berlin, The German Socio-Economic Panel (SOEP).
    19. Ronald Herrera & Ursula Berger & Ondine S. Von Ehrenstein & Iván Díaz & Stella Huber & Daniel Moraga Muñoz & Katja Radon, 2017. "Estimating the Causal Impact of Proximity to Gold and Copper Mines on Respiratory Diseases in Chilean Children: An Application of Targeted Maximum Likelihood Estimation," IJERPH, MDPI, vol. 15(1), pages 1-15, December.
    20. Graffelman, Jan, 2015. "Exploring Diallelic Genetic Markers: The HardyWeinberg Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i03).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:50:y:2021:i:3:p:1243-1258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.