IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p3018-d894242.html
   My bibliography  Save this article

On the Conditional Value at Risk Based on the Laplace Distribution with Application in GARCH Model

Author

Listed:
  • Malik Zaka Ullah

    (Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Fouad Othman Mallawi

    (Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Mir Asma

    (Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Stanford Shateyi

    (Department of Mathematics and Applied Mathematics, School of Mathematical and Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa)

Abstract

In this article, the Laplace distribution is employed in lieu of the well-known normal distribution for finding better scalar values of risk. Explicit formulas for value-at-risk (VaR) and conditional value-at-risk (CVaR) are studied and used to manage the risk involved in a stock movement by using the GARCH model. Numerical simulations are given for a variety of stocks in equity markets to uphold the findings.

Suggested Citation

  • Malik Zaka Ullah & Fouad Othman Mallawi & Mir Asma & Stanford Shateyi, 2022. "On the Conditional Value at Risk Based on the Laplace Distribution with Application in GARCH Model," Mathematics, MDPI, vol. 10(16), pages 1-13, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3018-:d:894242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/3018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/3018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    2. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
    3. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    4. Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, vol. 4(1), pages 1-27, January.
    5. Nicholas L. Georgakopoulos, 2018. "Illustrating Finance Policy with Mathematica," Quantitative Perspectives on Behavioral Economics and Finance, Palgrave Macmillan, number 978-3-319-95372-4, February.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Ahmed, Dilan & Soleymani, Fazlollah & Ullah, Malik Zaka & Hasan, Hataw, 2021. "Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    8. Wang, Gang-Jin & Zhu, Chun-Long, 2021. "BP-CVaR: A novel model of estimating CVaR with back propagation algorithm," Economics Letters, Elsevier, vol. 209(C).
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    10. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2021. "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation," Annals of Operations Research, Springer, vol. 299(1), pages 1281-1315, April.
    11. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    12. Bormetti, Giacomo & Cisana, Enrica & Montagna, Guido & Nicrosini, Oreste, 2007. "A non-Gaussian approach to risk measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 532-542.
    13. BRAIONE, Manuela & SCHOLTES, Nicolas K., 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," LIDAM Reprints CORE 2733, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owusu Junior, Peterson & Tiwari, Aviral Kumar & Tweneboah, George & Asafo-Adjei, Emmanuel, 2022. "GAS and GARCH based value-at-risk modeling of precious metals," Resources Policy, Elsevier, vol. 75(C).
    2. Ahmed, Dilan & Soleymani, Fazlollah & Ullah, Malik Zaka & Hasan, Hataw, 2021. "Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    3. Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
    4. José Antonio Núñez-Mora & Roberto Joaquín Santillán-Salgado & Mario Iván Contreras-Valdez, 2022. "COVID Asymmetric Impact on the Risk Premium of Developed and Emerging Countries’ Stock Markets," Mathematics, MDPI, vol. 10(9), pages 1-36, April.
    5. Rehman, Mobeen Ur & Owusu Junior, Peterson & Ahmad, Nasir & Vo, Xuan Vinh, 2022. "Time-varying risk analysis for commodity futures," Resources Policy, Elsevier, vol. 78(C).
    6. Emrah ALTUN & Morad ALIZADEH & Gamze OZEL & Hüseyin TATLIDIL & Najmieh MAKSAYI, 2017. "Forecasting Value-At-Risk With Two-Step Method: Garch-Exponentiated Odd Log-Logistic Normal Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 97-115, December.
    7. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    8. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    9. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    10. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Huang, Yirong & Luo, Yi, 2024. "Forecasting conditional volatility based on hybrid GARCH-type models with long memory, regime switching, leverage effect and heavy-tail: Further evidence from equity market," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    12. Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
    13. Liu, Chen & Wang, Chao & Tran, Minh-Ngoc & Kohn, Robert, 2025. "A long short-term memory enhanced realized conditional heteroskedasticity model," Economic Modelling, Elsevier, vol. 142(C).
    14. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    16. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    17. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    18. Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
    19. Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
    20. Laura Garcia-Jorcano & Alfonso Novales, 2020. "A dominance approach for comparing the performance of VaR forecasting models," Computational Statistics, Springer, vol. 35(3), pages 1411-1448, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3018-:d:894242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.