BP-CVaR: A novel model of estimating CVaR with back propagation algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2021.110125
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Ahmed, Dilan & Soleymani, Fazlollah & Ullah, Malik Zaka & Hasan, Hataw, 2021. "Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution," Applied Mathematics and Computation, Elsevier, vol. 402(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Malik Zaka Ullah & Fouad Othman Mallawi & Mir Asma & Stanford Shateyi, 2022. "On the Conditional Value at Risk Based on the Laplace Distribution with Application in GARCH Model," Mathematics, MDPI, vol. 10(16), pages 1-13, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012.
"Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range,"
International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Working Papers in Economics 11/22, University of Canterbury, Department of Economics and Finance.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Documentos de Trabajo del ICAE 2011-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chen, C.W.S. & Gerlach, R. & Hwang, B.B.K. & McAleer, M.J., 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range," Econometric Institute Research Papers EI 2011-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Szubzda Filip & Chlebus Marcin, 2019.
"Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions,"
Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
- Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
- Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
- Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
- Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
- Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021.
"Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures,"
Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
- Denisa Banulescu & Christophe Hurlin & Jeremy Leymarie & O. Scaillet, 2019. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Swiss Finance Institute Research Paper Series 19-48, Swiss Finance Institute.
- Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Post-Print hal-03526444, HAL.
- Banulescu-Radu, Denisa & Hurlin, Christophe & Leymarie, Jeremy & Scaillet, Olivier, 2020. "Backtesting marginal expected shortfalland related systemic risk measures," Working Papers unige:134136, University of Geneva, Geneva School of Economics and Management.
- Denisa Banulescu & Christophe Hurlin & Jeremy Leymarie & Olivier Scaillet, 2020. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Working Papers halshs-03088668, HAL.
- Lazar, Emese & Zhang, Ning, 2019.
"Model risk of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
- Emese Lazar & Ning Zhang, 2017. "Model Risk of Expected Shortfall," ICMA Centre Discussion Papers in Finance icma-dp2017-10, Henley Business School, University of Reading.
- Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011.
"Evaluating Value-at-Risk Models via Quantile Regression,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
- Gaglianone, Wagner Piazza & Linton, Oliver & Lima, Luiz Renato Regis de Oliveira, 2008. "Evaluating Value-at-Risk models via Quantile regressions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 679, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel Smith, 2010. "Evaluating Value-at-Risk Models via Quantile Regression," NCER Working Paper Series 67, National Centre for Econometric Research.
- Wagner P. Gaglianone & Luiz Renato Lima & Oliver Linton, 2008. "Evaluating Value-at-Risk Models via Quantile Regressions," Working Papers Series 161, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel, 2009. "Evaluating Value-at-Risk models via Quantile Regression," UC3M Working papers. Economics we094625, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Marco Bottone & Lea Petrella & Mauro Bernardi, 2021.
"Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
- Marco Bottone & Mauro Bernardi & Lea Petrella, 2019. "Unified Bayesian Conditional Autoregressive Risk Measures using the Skew Exponential Power Distribution," Papers 1902.03982, arXiv.org, revised Sep 2019.
- Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
- Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
- Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
- Stavros Degiannakis & Apostolos Kiohos, 2014.
"Multivariate modelling of 10-day-ahead VaR and dynamic correlation for worldwide real estate and stock indices,"
Journal of Economic Studies, Emerald Group Publishing Limited, vol. 41(2), pages 216-232, March.
- Degiannakis, Stavros & Kiohos, Apostolos, 2014. "Multivariate modelling of 10-day-ahead VaR and dynamic correlation for worldwide real estate and stock indices," MPRA Paper 80438, University Library of Munich, Germany.
- Buczyński Mateusz & Chlebus Marcin, 2018. "Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(2), pages 67-82, June.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020.
"Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary,"
Papers
2009.07341, arXiv.org.
- Dimitriadis, Timo & Liu, Xiaochun & Schnaitmann, Julie, 2020. "Encompassing tests for value at risk and expected shortfall multi-step forecasts based on inference on the boundary," Hohenheim Discussion Papers in Business, Economics and Social Sciences 11-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
- Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011.
"Evaluating Value-at-Risk Models with Desk-Level Data,"
Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
- Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2005. "Evaluating Value-at-Risk models with desk-level data," Working Paper Series 010, North Carolina State University, Department of Economics, revised Dec 2006.
- Peter Christoffersen & Jeremy Berkowitz & Denis Pelletier, 2008. "Evaluating Value-at-Risk Models with Desk-Level Data," CREATES Research Papers 2009-35, Department of Economics and Business Economics, Aarhus University.
- Lucas, André & Zhang, Xin, 2016.
"Score-driven exponentially weighted moving averages and Value-at-Risk forecasting,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
- André Lucas & Xin Zhang, 2014. "Score Driven exponentially Weighted Moving Average and Value-at-Risk Forecasting," Tinbergen Institute Discussion Papers 14-092/IV/DSF77, Tinbergen Institute, revised 09 Sep 2015.
- Lucas, André & Zhang, Xin, 2015. "Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting," Working Paper Series 309, Sveriges Riksbank (Central Bank of Sweden).
More about this item
Keywords
Risk measure; CVaR; Back propagation; BP-CVaR; Back-testing;All these keywords.
JEL classification:
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:209:y:2021:i:c:s016517652100402x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.