Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: inter-day versus intra-day data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
References listed on IDEAS
- Giot, Pierre & Laurent, Sebastien, 2004.
"Modelling daily Value-at-Risk using realized volatility and ARCH type models,"
Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
- Giot, P. & Laurent, S.F.J.A., 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- GIOT, Pierre & LAURENT, Sébastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," LIDAM Reprints CORE 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
- Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013.
"Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence,"
International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
- Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting Value-at-Risk and Expected Shortfall using Fractionally Integrated Models of Conditional Volatility: International Evidence," MPRA Paper 80433, University Library of Munich, Germany.
- Pierre Giot & Sébastien Laurent, 2003.
"Value-at-risk for long and short trading positions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
- GIOT, Pierre & LAURENT, Sébastien, 2001. "Value-at-risk for long and short trading positions," LIDAM Discussion Papers CORE 2001022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Value-at-Risk for long and short trading positions," LIDAM Reprints CORE 1707, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot and S»bastien Laurent, 2001. "Value-At-Risk For Long And Short Trading Positions," Computing in Economics and Finance 2001 94, Society for Computational Economics.
- Degiannakis, Stavros & Floros, Christos, 2016.
"Intra-day realized volatility for European and USA stock indices,"
Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
- Degiannakis, Stavros & Floros, Christos, 2014. "Intra-Day Realized Volatility for European and USA Stock Indices," MPRA Paper 64940, University Library of Munich, Germany, revised Jan 2015.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008.
"Volatility forecasting: Intra-day versus inter-day models,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," MPRA Paper 96322, University Library of Munich, Germany.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
- Jose A. Lopez, 1999.
"Methods for evaluating value-at-risk estimates,"
Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 119-124.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Research Paper 9802, Federal Reserve Bank of New York.
- Stavros Degiannakis & Pamela Dent & Christos Floros, 2014.
"A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification,"
Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
- Degiannakis, Stavros & Dent, Pamela & Floros, Christos, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," MPRA Paper 80431, University Library of Munich, Germany.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Huiyu Huang & Tae-Hwy Lee, 2013.
"Forecasting Value-at-Risk Using High-Frequency Information,"
Econometrics, MDPI, vol. 1(1), pages 1-14, June.
- Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Value-at-Risk Using High Frequency Information," Working Papers 201409, University of California at Riverside, Department of Economics.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- McMillan, David G. & Kambouroudis, Dimos, 2009. "Are RiskMetrics forecasts good enough? Evidence from 31 stock markets," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 117-124, June.
- Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing, vol. 6(3), pages 226-238, May.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004.
"The Use of GARCH Models in VaR Estimation,"
MPRA Paper
96332, University Library of Munich, Germany.
- Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2010. "The Use of GARCH Models in VaR Estimation," Working Papers 0048, University of Peloponnese, Department of Economics.
- Timotheos Angelidis & Stavros Degiannakis, 2005.
"Modeling risk for long and short trading positions,"
Journal of Risk Finance, Emerald Group Publishing Limited, vol. 6(3), pages 226-238, July.
- Angelidis, Timotheos & Degiannakis, Stavros, 2005. "Modeling Risk for Long and Short Trading Positions," MPRA Paper 80467, University Library of Munich, Germany.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Christoffersen, Peter, 2011.
"Elements of Financial Risk Management,"
Elsevier Monographs,
Elsevier,
edition 2, number 9780123744487.
- Christoffersen, Peter, 2003. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 1, number 9780121742324.
- Peter F. Christoffersen & Francis X. Diebold, 2000.
"How Relevant is Volatility Forecasting for Financial Risk Management?,"
The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
- Peter F. Christoffersen & Francis X. Diebold, 1997. "How Relevant is Volatility Forecasting for Financial Risk Management?," Center for Financial Institutions Working Papers 97-45, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Peter F. Christoffersen & Francis X. Diebold, 1998. "How Relevant is Volatility Forecasting for Financial Risk Management?," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-080, New York University, Leonard N. Stern School of Business-.
- Peter F. Christoffersen & Francis X. Diebold, 1998. "How Relevant is Volatility Forecasting for Financial Risk Management?," NBER Working Papers 6844, National Bureau of Economic Research, Inc.
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013.
"The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
- Robert Engle, 2004.
"Risk and Volatility: Econometric Models and Financial Practice,"
American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
- Engle III, Robert F., 2003. "Risk and Volatility: Econometric Models and Financial Practice," Nobel Prize in Economics documents 2003-4, Nobel Prize Committee.
- Adam Krzemienowski & Sylwia Szymczyk, 2016. "Portfolio optimization with a copula-based extension of conditional value-at-risk," Annals of Operations Research, Springer, vol. 237(1), pages 219-236, February.
- Adam Krzemienowski & Sylwia Szymczyk, 2016. "Portfolio optimization with a copula-based extension of conditional value-at-risk," Annals of Operations Research, Springer, vol. 237(1), pages 219-236, February.
- Stavros Degiannakis, 2004.
"Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model,"
Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
- Degiannakis, Stavros, 2004. "Volatility Forecasting: Evidence from a Fractional Integrated Asymmetric Power ARCH Skewed-t Model," MPRA Paper 96330, University Library of Munich, Germany.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Lo, Andrew W. & Craig MacKinlay, A., 1990.
"An econometric analysis of nonsynchronous trading,"
Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
- Andrew W. Lo & Craig A. MacKinlay, "undated". "An Econometric Analysis of Nonsyschronous-Trading," Rodney L. White Center for Financial Research Working Papers 19-89, Wharton School Rodney L. White Center for Financial Research.
- Andrew W. Lo & A. Craig MacKinlay, 1989. "An Econometric Analysis of Nonsynchronous Trading," NBER Working Papers 2960, National Bureau of Economic Research, Inc.
- Toshiaki Watanabe, 2012. "Quantile Forecasts Of Financial Returns Using Realized Garch Models," The Japanese Economic Review, Japanese Economic Association, vol. 63(1), pages 68-80, March.
- Angelidis, Timotheos & Degiannakis, Stavros, 2007.
"Backtesting VaR Models: A Τwo-Stage Procedure,"
MPRA Paper
96327, University Library of Munich, Germany.
- Angelidis, Timotheos & Degiannakis, Stavros, 2007. "Backtesting VaR Models: A Τwo-Stage Procedure," MPRA Paper 80418, University Library of Munich, Germany.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Pierre Giot, 2005.
"Market risk models for intraday data,"
The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
- GIOT, Pierre, 2005. "Market risk models for intraday data," LIDAM Reprints CORE 1850, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, vol. 4(1), pages 1-27, January.
- Kellner, Ralf & Rösch, Daniel, 2016. "Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk," Journal of Economic Dynamics and Control, Elsevier, vol. 68(C), pages 45-63.
- Giot, Pierre & Laurent, Sebastien, 2003.
"Market risk in commodity markets: a VaR approach,"
Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," LIDAM Reprints CORE 1682, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," LIDAM Discussion Papers CORE 2003028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Su, Jung-Bin, 2015. "Value-at-risk estimates of the stock indices in developed and emerging markets including the spillover effects of currency market," Economic Modelling, Elsevier, vol. 46(C), pages 204-224.
- Hansen, Bruce E, 1994.
"Autoregressive Conditional Density Estimation,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
- Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
- Tom Doan, "undated". "RATS programs to replicate Hansen's GARCH models with time-varying t-densities," Statistical Software Components RTZ00086, Boston College Department of Economics.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
- BRAIONE, Manuela & SCHOLTES, Nicolas K., 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," LIDAM Reprints CORE 2733, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, Kaijian & Tso, Geoffrey K.F. & Zou, Yingchao & Liu, Jia, 2018. "Crude oil risk forecasting: New evidence from multiscale analysis approach," Energy Economics, Elsevier, vol. 76(C), pages 574-583.
- Laura Garcia‐Jorcano & Alfonso Novales, 2021.
"Volatility specifications versus probability distributions in VaR forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
- Laura Garcia-Jorcano & Alfonso Novales, 2019. "Volatility specifications versus probability distributions in VaR forecasting," Documentos de Trabajo del ICAE 2019-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Adeel Nasir & Kanwal Iqbal Khan & Mário Nuno Mata & Pedro Neves Mata & Jéssica Nunes Martins, 2021. "Optimisation of Time-Varying Asset Pricing Models with Penetration of Value at Risk and Expected Shortfall," Mathematics, MDPI, vol. 9(4), pages 1-38, February.
- Gkillas, Konstantinos & Konstantatos, Christoforos & Papathanasiou, Spyros & Wohar, Mark, 2023. "Estimation of value at risk for copper," Journal of Commodity Markets, Elsevier, vol. 32(C).
- repec:agr:journl:v:4(621):y:2019:i:4(621):p:201-218 is not listed on IDEAS
- Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
- Ding, Shusheng & Cui, Tianxiang & Zhang, Yongmin, 2022. "Futures volatility forecasting based on big data analytics with incorporating an order imbalance effect," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Pradhan, Ashis Kumar & Tiwari, Aviral Kumar, 2021. "Estimating the market risk of clean energy technologies companies using the expected shortfall approach," Renewable Energy, Elsevier, vol. 177(C), pages 95-100.
- Zhang, Ning & Su, Xiaoman & Qi, Shuyuan, 2023. "An empirical investigation of multiperiod tail risk forecasting models," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Siva Kiran GUPTHA. K & Prabhakar RAO. R, 2019. "GARCH based VaR estimation: An empirical evidence from BRICS stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 201-218, Winter.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013.
"Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence,"
International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
- Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting Value-at-Risk and Expected Shortfall using Fractionally Integrated Models of Conditional Volatility: International Evidence," MPRA Paper 80433, University Library of Munich, Germany.
- Stavros Degiannakis & Pamela Dent & Christos Floros, 2014.
"A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification,"
Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
- Degiannakis, Stavros & Dent, Pamela & Floros, Christos, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," MPRA Paper 80431, University Library of Munich, Germany.
- Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013.
"The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
- Laura Garcia‐Jorcano & Alfonso Novales, 2021.
"Volatility specifications versus probability distributions in VaR forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
- Laura Garcia-Jorcano & Alfonso Novales, 2019. "Volatility specifications versus probability distributions in VaR forecasting," Documentos de Trabajo del ICAE 2019-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007.
"A robust VaR model under different time periods and weighting schemes,"
Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
- Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2007. "A Robust VaR Model under Different Time Periods and Weighting Schemes," MPRA Paper 80466, University Library of Munich, Germany.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008.
"Volatility forecasting: Intra-day versus inter-day models,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," MPRA Paper 96322, University Library of Munich, Germany.
- Paul Bui Quang & Tony Klein & Nam H. Nguyen & Thomas Walther, 2018. "Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH," JRFM, MDPI, vol. 11(2), pages 1-20, April.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: intra-day vs. inter-day models," MPRA Paper 80434, University Library of Munich, Germany.
- Chaker Aloui & Hela BEN HAMIDA, 2015. "Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 30-54, January.
- Cheng, Wan-Hsiu & Hung, Jui-Cheng, 2011. "Skewness and leptokurtosis in GARCH-typed VaR estimation of petroleum and metal asset returns," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 160-173, January.
- Maghyereh Aktham Issa & Awartani Basel, 2012. "Modeling and Forecasting Value-at-Risk in the UAE Stock Markets: The Role of Long Memory, Fat Tails and Asymmetries in Return Innovations," Review of Middle East Economics and Finance, De Gruyter, vol. 8(1), pages 1-22, August.
- Degiannakis, Stavros, 2018.
"Multiple days ahead realized volatility forecasting: Single, combined and average forecasts,"
Global Finance Journal, Elsevier, vol. 36(C), pages 41-61.
- Degiannakis, Stavros, 2018. "Multiple Days Ahead Realized Volatility Forecasting: Single, Combined and Average Forecasts," MPRA Paper 96272, University Library of Munich, Germany.
- Angelidis, Timotheos & Degiannakis, Stavros, 2007.
"Backtesting VaR Models: A Τwo-Stage Procedure,"
MPRA Paper
96327, University Library of Munich, Germany.
- Angelidis, Timotheos & Degiannakis, Stavros, 2007. "Backtesting VaR Models: A Τwo-Stage Procedure," MPRA Paper 80418, University Library of Munich, Germany.
- Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
- Timotheos Angelidis & Alexandros Benos, 2008. "Value-at-Risk for Greek Stocks," Multinational Finance Journal, Multinational Finance Journal, vol. 12(1-2), pages 67-104, March-Jun.
More about this item
Keywords
Basel II; Basel III; Value-at-Risk; Expected Shortfall; volatility forecasting; intra-day data; multi-period-ahead; forecasting accuracy; risk modelling.;All these keywords.
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2016-10-30 (Forecasting)
- NEP-ORE-2016-10-30 (Operations Research)
- NEP-RMG-2016-10-30 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:74670. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.