IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i3p1301-1310.html
   My bibliography  Save this article

Synchronization of discrete-time hyperchaotic systems: An application in communications

Author

Listed:
  • Aguilar-Bustos, A.Y.
  • Cruz-Hernández, C.

Abstract

In this paper, the synchronization problem of discrete-time complex dynamics is presented. In particular, we use the model-matching approach from nonlinear control theory to synchronize two unidirectionally coupled discrete-time hyperchaotic systems. A potential application to secure/private communication of confidential information is also given. By using different (hyperchaotic) encryption schemes with a single and two transmission channels, we show that output synchronization of hyperchaotic maps is indeed suitable for encryption, transmission, and decryption of information.

Suggested Citation

  • Aguilar-Bustos, A.Y. & Cruz-Hernández, C., 2009. "Synchronization of discrete-time hyperchaotic systems: An application in communications," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1301-1310.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:3:p:1301-1310
    DOI: 10.1016/j.chaos.2008.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908002531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Tiegang & Chen, Zengqiang & Yuan, Zhuzhi & Yu, Dongchuan, 2007. "Adaptive synchronization of a new hyperchaotic system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 922-928.
    2. Ge, Zheng-Ming & Chen, Yen-Sheng, 2007. "Synchronization of mutual coupled chaotic systems via partial stability theory," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 787-794.
    3. Zhang, Bai & Chen, Maoyin & Zhou, Donghua, 2006. "Chaotic secure communication based on particle filtering," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1273-1280.
    4. Chen, Maoyin & Zhou, Donghua & Shang, Yun, 2005. "A sliding mode observer based secure communication scheme," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 573-578.
    5. Yan, Zhenya & Yu, Pei, 2008. "Hyperchaos synchronization and control on a new hyperchaotic attractor," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 333-345.
    6. Hyun, Chang-Ho & Kim, Jae-Hun & Kim, Euntai & Park, Mignon, 2006. "Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 930-940.
    7. Yang, Yu & Ma, Xi-Kui & Zhang, Hao, 2006. "Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 244-251.
    8. Yan, Jun-Juh & Yang, Yi-Sung & Chiang, Tsung-Ying & Chen, Ching-Yuan, 2007. "Robust synchronization of unified chaotic systems via sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 947-954.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tutueva, Aleksandra V. & Moysis, Lazaros & Rybin, Vyacheslav G. & Kopets, Ekaterina E. & Volos, Christos & Butusov, Denis N., 2022. "Fast synchronization of symmetric Hénon maps using adaptive symmetry control," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. López-Gutiérrez, R.M. & Posadas-Castillo, C. & López-Mancilla, D. & Cruz-Hernández, C., 2009. "Communicating via robust synchronization of chaotic lasers," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 277-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-Gutiérrez, R.M. & Posadas-Castillo, C. & López-Mancilla, D. & Cruz-Hernández, C., 2009. "Communicating via robust synchronization of chaotic lasers," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 277-285.
    2. Lien, Chang-Hua & Cheng, Wen-Chin & Tsai, Che-Hung & Yu, Ker-Wei, 2007. "Non-fragile observer-based controls of linear system via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1530-1537.
    3. Lien, Chang-Hua, 2007. "H∞ non-fragile observer-based controls of dynamical systems via LMI optimization approach," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 428-436.
    4. Grassi, Giuseppe, 2009. "Observer-based hyperchaos synchronization in cascaded discrete-time systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 1029-1039.
    5. Posadas-Castillo, C. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2009. "Experimental realization of synchronization in complex networks with Chua’s circuits like nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1963-1975.
    6. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    7. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    8. Coelho, Leandro dos Santos & Bernert, Diego Luis de Andrade, 2009. "PID control design for chaotic synchronization using a tribes optimization approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 634-640.
    9. Wang, Jiang & Si, Wenjie & Li, Huiyan, 2009. "Robust ISS-satisficing variable universe indirect fuzzy control for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 28-38.
    10. Asemani, Mohammad Hassan & Majd, Vahid Johari, 2009. "Stability of output-feedback DPDC-based fuzzy synchronization of chaotic systems via LMI," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1126-1135.
    11. Hyun, Chang-Ho & Park, Chang-Woo & Kim, Jae-Hun & Park, Mignon, 2009. "Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2200-2209.
    12. Pai, Ming-Chang, 2015. "Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 757-767.
    13. Zhang, Bai & Chen, Maoyin & Zhou, Donghua, 2006. "Chaotic secure communication based on particle filtering," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1273-1280.
    14. Beyhan, Selami & Cetin, Meric, 2022. "Second-order hyperparameter tuning of model-based and adaptive observers for time-varying and unknown chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Han, S. & Chang, E. & Dillon, T. & Hwang, M. & Lee, C., 2009. "Identifying attributes and insecurity of a public-channel key exchange protocol using chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2569-2575.
    17. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Jinping Liu & Abdullah A. Al-Barakati, 2023. "Fixed-Time Adaptive Chaotic Control for Permanent Magnet Synchronous Motor Subject to Unknown Parameters and Perturbations," Mathematics, MDPI, vol. 11(14), pages 1-14, July.
    18. Chang, Jen-Fuh & Hung, Meei-Ling & Yang, Yi-Sung & Liao, Teh-Lu & Yan, Jun-Juh, 2008. "Controlling chaos of the family of Rössler systems using sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 609-622.
    19. Li, Damei & Wang, Pei & Lu, Jun-an, 2009. "Some synchronization strategies for a four-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2553-2559.
    20. Chen, Qun & Li, Bo & Yin, Wei & Jiang, Xiaowei & Chen, Xiangyong, 2023. "Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:3:p:1301-1310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.