Complex dynamics of a discrete-time predator-prey system with Holling IV functional response
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2016.04.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Xiaoli & Xiao, Dongmei, 2007. "Complex dynamic behaviors of a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 80-94.
- Gao, Shujing & Chen, Lansun, 2005. "The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1013-1023.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Qiaoling & Teng, Zhidong & Wang, Feng, 2021. "Fold-flip and strong resonance bifurcations of a discrete-time mosquito model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Blé, Gamaliel & Dela-Rosa, Miguel Angel, 2019. "Neimark–Sacker bifurcation in a tritrophic model with defense in the prey," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 124-139.
- Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
- Banerjee, Ritwick & Das, Pritha & Mukherjee, Debasis, 2018. "Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-III functional response," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 240-248.
- Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Binhao Hong & Chunrui Zhang, 2023. "Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
- Gu, En-Guo & Hao, Yu-Dong, 2007. "On the global analysis of dynamics in a delayed regulation model with an external interference," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1272-1284.
- Gao, Shujing & Chen, Lansun & Sun, Lihua, 2005. "Dynamic complexities in a seasonal prevention epidemic model with birth pulses," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1171-1181.
- Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Mohammed O. Al-Kaff & Ghada AlNemer & Hamdy A. El-Metwally & Abd-Elalim A. Elsadany & Elmetwally M. Elabbasy, 2024. "Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
- Akhtar, S. & Ahmed, R. & Batool, M. & Shah, Nehad Ali & Chung, Jae Dong, 2021. "Stability, bifurcation and chaos control of a discretized Leslie prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
- Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
- Ali Yousef & Fatma Bozkurt Yousef, 2019. "Bifurcation and Stability Analysis of a System of Fractional-Order Differential Equations for a Plant–Herbivore Model with Allee Effect," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
- Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Zhao, Hongyong & Zhang, Xuebing & Huang, Xuanxuan, 2015. "Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 462-480.
- Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
- Xiongxiong Du & Xiaoling Han & Ceyu Lei, 2022. "Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
- Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Xiaorong Ma & Qamar Din & Muhammad Rafaqat & Nasir Javaid & Yongliang Feng, 2020. "A Density-Dependent Host-Parasitoid Model with Stability, Bifurcation and Chaos Control," Mathematics, MDPI, vol. 8(4), pages 1-26, April.
- Bozkurt, Fatma & Yousef, Ali & Baleanu, Dumitru & Alzabut, Jehad, 2020. "A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Zhang, Xue & Zhang, Qing-Ling & Liu, Chao & Xiang, Zhong-Yi, 2009. "Bifurcations of a singular prey–predator economic model with time delay and stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1485-1494.
- Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
- Yun Liu & Lifeng Guo & Xijuan Liu, 2023. "Dynamical Behaviors in a Stage-Structured Model with a Birth Pulse," Mathematics, MDPI, vol. 11(15), pages 1-13, July.
- Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
More about this item
Keywords
Predator-prey system; Discrete-time dynamical system; Chaos; Flip bifurcation; Neimark-Sacker bifurcation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:87:y:2016:i:c:p:158-171. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.