IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v10y2011i02ns0219622011004373.html
   My bibliography  Save this article

Tabu Programming: A New Problem Solver Through Adaptive Memory Programming Over Tree Data Structures

Author

Listed:
  • ABDEL-RAHMAN HEDAR

    (Department of Computer Science, Faculty of Computers and Information, Assiut University, Egypt)

  • EMAD MABROUK

    (Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan)

  • MASAO FUKUSHIMA

    (Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan)

Abstract

Since the first appearance of the Genetic Programming (GP) algorithm, extensive theoretical and application studies on it have been conducted. Nowadays, the GP algorithm is considered one of the most important tools in Artificial Intelligence (AI). Nevertheless, several questions have been raised about the complexity of the GP algorithm and the disruption effect of the crossover and mutation operators. In this paper, the Tabu Programming (TP) algorithm is proposed to employ the search strategy of the classical Tabu Search algorithm with the tree data structure. Moreover, the TP algorithm exploits a set of local search procedures over a tree space in order to mitigate the drawbacks of the crossover and mutation operators. Extensive numerical experiments are performed to study the performance of the proposed algorithm for a set of benchmark problems. The results of those experiments show that the TP algorithm compares favorably to recent versions of the GP algorithm in terms of computational efforts and the rate of success. Finally, we present a comprehensive framework called Meta-Heuristics Programming (MHP) as general machine learning tools.

Suggested Citation

  • Abdel-Rahman Hedar & Emad Mabrouk & Masao Fukushima, 2011. "Tabu Programming: A New Problem Solver Through Adaptive Memory Programming Over Tree Data Structures," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 373-406.
  • Handle: RePEc:wsi:ijitdm:v:10:y:2011:i:02:n:s0219622011004373
    DOI: 10.1142/S0219622011004373
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622011004373
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622011004373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David H. Wolpert & William G. Macready, 1995. "No Free Lunch Theorems for Search," Working Papers 95-02-010, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Guo & Qishan Zhang, 2017. "A Discrete Artificial Bee Colony Algorithm for the Reverse Logistics Location and Routing Problem," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1339-1357, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jui-Sheng Chou & Dinh-Nhat Truong & Chih-Fong Tsai, 2021. "Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics," Mathematics, MDPI, vol. 9(6), pages 1-25, March.
    2. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
    3. Aktaş, Dilay & Lokman, Banu & İnkaya, Tülin & Dejaegere, Gilles, 2024. "Cluster ensemble selection and consensus clustering: A multi-objective optimization approach," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1065-1077.
    4. Kamran Zolfi, 2023. "Gold rush optimizer: A new population-based metaheuristic algorithm," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(1), pages 113-150.
    5. William G. Macready & David H. Wolpert, 1995. "What Makes an Optimization Problem Hard?," Working Papers 95-05-046, Santa Fe Institute.
    6. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    7. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    8. Galioto, Francesco & Battilani, Adriano, 2021. "Agro-economic simulation for day by day irrigation scheduling optimisation," Agricultural Water Management, Elsevier, vol. 248(C).
    9. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2024. "Multi Criteria Frameworks Using New Meta-Heuristic Optimization Techniques for Solving Multi-Objective Optimal Power Flow Problems," Energies, MDPI, vol. 17(9), pages 1-39, May.
    10. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
    11. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    12. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    13. William G. Macready & David H. Wolpert, 1996. "On 2-Armed Gaussian Bandits and Optimization," Working Papers 96-03-009, Santa Fe Institute.
    14. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    15. Díaz–Pachón, Daniel Andrés & Sáenz, Juan Pablo & Rao, J. Sunil, 2020. "Hypothesis testing with active information," Statistics & Probability Letters, Elsevier, vol. 161(C).
    16. Wang, Sinan & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2017. "Heuristic method for automakers' technological strategy making towards fuel economy regulations based on genetic algorithm: A China's case under corporate average fuel consumption regulation," Applied Energy, Elsevier, vol. 204(C), pages 544-559.
    17. Kimbrough, Steven Orla & Koehler, Gary J. & Lu, Ming & Wood, David Harlan, 2008. "On a Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm for constrained optimization: Distance tracing and no free lunch," European Journal of Operational Research, Elsevier, vol. 190(2), pages 310-327, October.
    18. Schirmer, Andreas & Riesenberg, Sven, 1998. "Class-based control schemes for parameterized project scheduling heuristics," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 471, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Yi Peng & Gang Kou & Guoxun Wang & Honggang Wang & Franz I. S. Ko, 2009. "Empirical Evaluation Of Classifiers For Software Risk Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 749-767.
    20. Khalid Abdulaziz Alnowibet & Shalini Shekhawat & Akash Saxena & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "Development and Applications of Augmented Whale Optimization Algorithm," Mathematics, MDPI, vol. 10(12), pages 1-33, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:10:y:2011:i:02:n:s0219622011004373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.