IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v98y2014icp11-18.html
   My bibliography  Save this article

Replicating disease spread in empirical cattle networks by adjusting the probability of infection in random networks

Author

Listed:
  • Duncan, A.J.
  • Gunn, G.J.
  • Umstatter, C.
  • Humphry, R.W.

Abstract

Comparisons between mass-action or “random†network models and empirical networks have produced mixed results. Here we seek to discover whether a simulated disease spread through randomly constructed networks can be coerced to model the spread in empirical networks by altering a single disease parameter — the probability of infection. A stochastic model for disease spread through herds of cattle is utilised to model the passage of an SEIR (susceptible–latent–infected–resistant) through five networks. The first network is an empirical network of recorded contacts, from four datasets available, and the other four networks are constructed from randomly distributed contacts based on increasing amounts of information from the recorded network. A numerical study on adjusting the value of the probability of infection was conducted for the four random network models. We found that relative percentage reductions in the probability of infection, between 5.6% and 39.4% in the random network models, produced results that most closely mirrored the results from the empirical contact networks. In all cases tested, to reduce the differences between the two models, required a reduction in the probability of infection in the random network.

Suggested Citation

  • Duncan, A.J. & Gunn, G.J. & Umstatter, C. & Humphry, R.W., 2014. "Replicating disease spread in empirical cattle networks by adjusting the probability of infection in random networks," Theoretical Population Biology, Elsevier, vol. 98(C), pages 11-18.
  • Handle: RePEc:eee:thpobi:v:98:y:2014:i:c:p:11-18
    DOI: 10.1016/j.tpb.2014.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580914000653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2014.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badham, Jennifer & Stocker, Rob, 2010. "The impact of network clustering and assortativity on epidemic behaviour," Theoretical Population Biology, Elsevier, vol. 77(1), pages 71-75.
    2. Eames, K.T.D., 2008. "Modelling disease spread through random and regular contacts in clustered populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 104-111.
    3. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    4. Jennifer Badham & Rob Stocker, 2010. "A Spatial Approach to Network Generation for Three Properties: Degree Distribution, Clustering Coefficient and Degree Assortativity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(1), pages 1-11.
    5. M. C. Boily & Z. Asghar & T. Garske & A. C. Ghani & R. Poulin, 2007. "Influence of Selected Formation Rules for Finite Population Networks with Fixed Macrostructures: Implications for Individual-Based Model of Infectious Diseases," Mathematical Population Studies, Taylor & Francis Journals, vol. 14(4), pages 237-267, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reppas, Andreas I. & Spiliotis, Konstantinos & Siettos, Constantinos I., 2015. "Tuning the average path length of complex networks and its influence to the emergent dynamics of the majority-rule model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 186-196.
    2. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    3. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    5. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    6. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    8. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    9. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    10. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    11. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Mulas, Maurizio, 2019. "Comparative ecological network analysis: An application to Italy," Land Use Policy, Elsevier, vol. 81(C), pages 714-724.
    12. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    13. T. Botmart & N. Yotha & P. Niamsup & W. Weera, 2017. "Hybrid Adaptive Pinning Control for Function Projective Synchronization of Delayed Neural Networks with Mixed Uncertain Couplings," Complexity, Hindawi, vol. 2017, pages 1-18, August.
    14. Sgrignoli, P. & Agliari, E. & Burioni, R. & Schianchi, A., 2015. "Instability and network effects in innovative markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 260-271.
    15. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    16. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    17. Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    18. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    19. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    20. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:98:y:2014:i:c:p:11-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.