IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i8p250-d391752.html
   My bibliography  Save this article

Analyzing Macro-Level Ecological Change and Micro-Level Farmer Behavior in Manas River Basin, China

Author

Listed:
  • Na Liao

    (Department of Geography, College of Science, Shihezi University, Shihezi 832000, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Xinchen Gu

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Yuejian Wang

    (Department of Geography, College of Science, Shihezi University, Shihezi 832000, China)

  • Hailiang Xu

    (Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

  • Zili Fan

    (Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

Abstract

Environmental degradation is closely related to unreasonable land use behaviors by farmers. In this study, participatory rural assessment (PRA) is used to conduct a detailed survey of farmers and plots and to collect relevant natural and social statistics. The accuracy of remote sensing data is verified by comparative analysis, and the change in status of various land use types in each research period is reflected by the change in the dynamic degree and change in range. We examine how farmers’ attitudes and behaviors affect environmental degradation, using a sample of 403 farmers in China’s Manas River Basin. Due to age, education, income and other differences, farmers’ land use behaviors, as well as their attitude toward and feelings about environmental degradation, vary greatly. We found that most farmers considered the environment to be very important to their lives and crop production, but nearly 21% did not know the causes of environmental degradation and nearly 8% did not consider the environmental impacts of their crop production activities. A new model for oasis expansion—land integration—is presented here. This model can increase the area of cultivated land, reduce cultivated land fragmentation, save irrigation water, improve the field microclimate and form a good ecological cycle. Through land transfer, ecological compensation and ecological protection incentives, the government should guide farmers’ land use behaviors toward cooperation with the river basin’s ecological protection and land use planning.

Suggested Citation

  • Na Liao & Xinchen Gu & Yuejian Wang & Hailiang Xu & Zili Fan, 2020. "Analyzing Macro-Level Ecological Change and Micro-Level Farmer Behavior in Manas River Basin, China," Land, MDPI, vol. 9(8), pages 1-17, July.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:8:p:250-:d:391752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/8/250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/8/250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Li & Yuan Zhang & Qiming Qin & Yueguan Yan, 2017. "Investigating the Impact of Human Activity on Land Use/Cover Change in China’s Lijiang River Basin from the Perspective of Flow and Type of Population," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    2. Xiaohui Huang & Lili Wang & Qian Lu, 2018. "Vulnerability Assessment of Soil and Water Loss in Loess Plateau and Its Impact on Farmers’ Soil and Water Conservation Adaptive Behavior," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    3. Sierra, Rodrigo & Russman, Eric, 2006. "On the efficiency of environmental service payments: A forest conservation assessment in the Osa Peninsula, Costa Rica," Ecological Economics, Elsevier, vol. 59(1), pages 131-141, August.
    4. Xiaoyang Song & Yaohuan Huang & Jingying Fu & Dong Jiang & Guangjin Tian, 2017. "Spatial Variability and Ecological Effects of Anthropogenic Activities in a Nature Reserve: A Case Study in the Baijitan National Nature Reserve, China," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    5. Su, Hailong & Wu, Jia Hao & Tan, Yinghui & Bao, Yuanqiu & Song, Bing & He, Xinghua, 2014. "A land use and transportation integration method for land use allocation and transportation strategies in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 329-353.
    6. Staal, S. J. & Baltenweck, I. & Waithaka, M. M. & deWolff, T. & Njoroge, L., 2002. "Location and uptake: integrated household and GIS analysis of technology adoption and land use, with application to smallholder dairy farms in Kenya," Agricultural Economics, Blackwell, vol. 27(3), pages 295-315, November.
    7. Yong-Ji Xue & Ting Deng & KuoRay Mao, 2018. "Influencing Factors on the Ecological Protection Behaviors of Entrepreneurial Farmers in Chinese Forest Zones," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    8. Cao, Shixiong & Xia, Chengqi & Yue, Hui & Ma, Hua & Lin, Gengen, 2018. "Targeted control measures for ecological restoration in Western Fujian, China," Land Use Policy, Elsevier, vol. 76(C), pages 186-192.
    9. Holden, Stein & Shiferaw, Bekele & Pender, John, 2004. "Non-farm income, household welfare, and sustainable land management in a less-favoured area in the Ethiopian highlands," Food Policy, Elsevier, vol. 29(4), pages 369-392, August.
    10. Wossink, Ada & Swinton, Scott M., 2007. "Jointness in production and farmers' willingness to supply non-marketed ecosystem services," Ecological Economics, Elsevier, vol. 64(2), pages 297-304, December.
    11. Junjie Yan & Guangpeng Zhang & Xiaoya Deng & Hongbo Ling & Hailiang Xu & Bin Guo, 2019. "Does Climate Change or Human Activity Lead to the Degradation in the Grassland Ecosystem in a Mountain-Basin System in an Arid Region of China?," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    12. Liguo Zhang & Xuerong Li, 2016. "The Impact of Traditional Culture on Farmers’ Moral Hazard Behavior in Crop Production: Evidence from China," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
    13. Kent Olson & Linh Vu, 2009. "Economic efficiency in farm households: trends, explanatory factors, and estimation methods," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 587-599, September.
    14. Zhou, Yuan & Zhang, Yili & Abbaspour, Karim C. & Mosler, Hans-Joachim & Yang, Hong, 2009. "Economic impacts on farm households due to water reallocation in China's Chaobai watershed," Agricultural Water Management, Elsevier, vol. 96(5), pages 883-891, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Na Liao & Xinchen Gu & Yuejian Wang & Hailiang Xu & Zili Fan, 2021. "Analysis of Ecological and Economic Benefits of Rural Land Integration in the Manas River Basin Oasis," Land, MDPI, vol. 10(5), pages 1-14, April.
    2. Wei Ren & Xuesong Zhang & Yebo Shi, 2021. "Evaluation of Ecological Environment Effect of Villages Land Use and Cover Change: A Case Study of Some Villages in Yudian Town, Guangshui City, Hubei Province," Land, MDPI, vol. 10(3), pages 1-19, March.
    3. Xin Yan & Yuejian Wang & Na Liao & Hailiang Xu & Zili Fan, 2021. "Assessment of Value Changes and Spatial Differences in Land Use Based on an Empirical Survey in the Manas River Basin," Land, MDPI, vol. 10(9), pages 1-19, September.
    4. Meilin Wang & Yaqi Shao & Qun’ou Jiang & Ling Xiao & Haiming Yan & Xiaowei Gao & Lijun Wang & Peibin Liu, 2020. "Impacts of Climate Change and Human Activity on the Runoff Changes in the Guishui River Basin," Land, MDPI, vol. 9(9), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chamberlin, Jordan & Pender, John & Yu, Bingxin, 2006. "Development domains for Ethiopia: capturing the geographical context of smallholder development options," EPTD discussion papers 159, International Food Policy Research Institute (IFPRI).
    2. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    3. Evan J. Miller-Tait & Sandeep Mohapatra & M. K. (Marty) Luckert & Brent M. Swallow, 2019. "Processing technologies for undervalued grains in rural India: on target to help the poor?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 151-166, February.
    4. Luciano Pilati & Vasco Boatto, 2013. "Bio-Economics Of Allocatable Pollination Services: Sequential Choices And Jointness In Sites," DEM Discussion Papers 2013/18, Department of Economics and Management.
    5. Blackman, Allen, 2013. "Evaluating forest conservation policies in developing countries using remote sensing data: An introduction and practical guide," Forest Policy and Economics, Elsevier, vol. 34(C), pages 1-16.
    6. Barbara Langlois & Vincent Martinet, 2023. "Defining cost-effective ways to improve ecosystem services provision in agroecosystems," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(2), pages 123-165, June.
    7. Carrión-Flores, Carmen E. & Flores-Lagunes, Alfonso & Guci, Ledia, 2018. "An estimator for discrete-choice models with spatial lag dependence using large samples, with an application to land-use conversions," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 77-93.
    8. Kataria, Karin & Curtiss, Jarmila & Balmann, Alfons, 2012. "Drivers of Agricultural Physical Capital Development: Theoretical Framework and Hypotheses," Factor Markets Working Papers 122, Centre for European Policy Studies.
    9. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    10. Patrick S. Ward & Valerien O. Pede, 2015. "Capturing social network effects in technology adoption: the spatial diffusion of hybrid rice in Bangladesh," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), pages 225-241, April.
    11. Wollni, Meike & Andersson, Camilla, 2014. "Spatial patterns of organic agriculture adoption: Evidence from Honduras," Ecological Economics, Elsevier, vol. 97(C), pages 120-128.
    12. Carlos E. Carpio, & Octavio A. Ramirez, & Tullaya Boonsaeng, 2011. "Potential for Tradable Water Allocation and Rights in Jordan," Land Economics, University of Wisconsin Press, vol. 87(4), pages 595-609.
    13. Waithaka, M.M. & Thornton, P.K. & Herrero, M. & Shepherd, K.D., 2006. "Bio-economic evaluation of farmers' perceptions of viable farms in western Kenya," Agricultural Systems, Elsevier, vol. 90(1-3), pages 243-271, October.
    14. World Bank, 2007. "Determinants of the Adoption of Sustainable Land Management Practices and Their Impacts in the Ethiopian Highlands," World Bank Publications - Reports 7938, The World Bank Group.
    15. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    16. Tharakan, Joe & Lefèvre, Mélanie, 2011. "Intermediaries, transport costs and interlinked transactions," CEPR Discussion Papers 8615, C.E.P.R. Discussion Papers.
    17. Mekonnen, Dawit K. & Dorfman, Jeffrey H., 2017. "Synergy and Learning Effects of Informal Labor-Sharing Arrangements," World Development, Elsevier, vol. 99(C), pages 1-14.
    18. Ina, Porras & Bruce, Alyward & Jeff, Dengel, 2013. "Monitoring payments for watershed services schemes in developing countries," MPRA Paper 47185, University Library of Munich, Germany.
    19. Dula Etana & Denyse J. R. M. Snelder & Cornelia F. A. van Wesenbeeck & Tjard de Cock Buning, 2021. "The Impact of Adaptation to Climate Change and Variability on the Livelihood of Smallholder Farmers in Central Ethiopia," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    20. Huber, Robert & Lehmann, Bernard, 2010. "Economies of Scope in the Agricultural Provision of Ecosystem Services: An Application to a High Cost Production Region," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 59(02), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:8:p:250-:d:391752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.