IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i2p57-d320576.html
   My bibliography  Save this article

Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China

Author

Listed:
  • Huawei Li

    (Department of Landscape Planning and Regional Development, Faculty of Landscape Architecture and Urbanism, Szent István University, 1108 Budapest, Hungary
    Department of Landscape Architecture, College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Guifang Wang

    (Department of Landscape Planning and Regional Development, Faculty of Landscape Architecture and Urbanism, Szent István University, 1108 Budapest, Hungary)

  • Guohang Tian

    (Department of Landscape Architecture, College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Sándor Jombach

    (Department of Landscape Planning and Regional Development, Faculty of Landscape Architecture and Urbanism, Szent István University, 1108 Budapest, Hungary)

Abstract

The Urban Heat Island (UHI) effect has been extensively studied as a global issue. The urbanization process has been proved to be the main reason for this phenomenon. Over the past 20 years, the built-up area of Zhengzhou city has grown five times larger, and the UHI effect has become increasingly pressing for the city’s inhabitants. Therefore, mitigating the UHI effect is an important research focus of the expanding capital city of the Henan province. In this study, the Landsat 8 image of July 2019 was selected from Landsat collection to obtain Land Surface Temperature (LST) by using Radiative Transfer Equation (RTE) method, and present land cover information by using spectral indices. Additionally, high-resolution Google Earth images were used to select 123 parks, grouped in five categories, to explore the impact factors on park cooling effect. Park Cooling Intensity (PCI) has been chosen as an indicator of the park cooling effect which will quantify its relation to park patch metrics. The results show that: (1) Among the five studied park types, the theme park category has the largest cooling effect while the linear park category has the lowest cooling effect; (2) The mean park LST and PCI of the samples are positively correlated with the Fractional Vegetation Cover (FVC) and with Normalized Difference Water Index (NDWI), but these are negatively correlated with the Normalized Difference Impervious Surface Index (NDISI). We can suppose that the increase of vegetation cover rate within water areas as well as the decrease of impervious surface in landscape planning and design will make future parks colder. (3) There is a correlation between the PCI and the park characteristics. The UHI effect could be mitigated by increasing of park size and reducing park fractal dimension (Frac_Dim) and perimeter-area ratio (Patario). (4) The PCI is influenced by the park itself and its surrounding area. These results will provide an important reference for future urban planning and urban park design to mitigate the urban heat island effect.

Suggested Citation

  • Huawei Li & Guifang Wang & Guohang Tian & Sándor Jombach, 2020. "Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China," Land, MDPI, vol. 9(2), pages 1-17, February.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:2:p:57-:d:320576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/2/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/2/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongbo Zhao & Zhibin Ren & Juntao Tan, 2018. "The Spatial Patterns of Land Surface Temperature and Its Impact Factors: Spatial Non-Stationarity and Scale Effects Based on a Geographically-Weighted Regression Model," Sustainability, MDPI, vol. 10(7), pages 1-21, June.
    2. Azad Rasul & Heiko Balzter & Claire Smith & John Remedios & Bashir Adamu & José A. Sobrino & Manat Srivanit & Qihao Weng, 2017. "A Review on Remote Sensing of Urban Heat and Cool Islands," Land, MDPI, vol. 6(2), pages 1-10, June.
    3. Min Min & Hongbo Zhao & Changhong Miao, 2018. "Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City, China," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Mu & Chang Liu & Guohang Tian & Yaqiong Xu & Yali Zhang & Audrey L. Mayer & Rui Lv & Ruizhen He & Gunwoo Kim, 2020. "Conceptual Planning of Urban–Rural Green Space from a Multidimensional Perspective: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    2. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    3. Jianwei Gao & Haiting Han & Shidong Ge, 2023. "Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens," Land, MDPI, vol. 12(7), pages 1-19, July.
    4. Kun Wang & Xubin Fang & Yue Ma & Sihan Xue & Shi Yin, 2022. "Assessing Effects of Urban Greenery on the Regulation Mechanism of Microclimate and Outdoor Thermal Comfort during Winter in China’s Cold Region," Land, MDPI, vol. 11(9), pages 1-20, August.
    5. Chenyu Du & Peihao Song & Kun Wang & Ang Li & Yongge Hu & Kaihua Zhang & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Yangyang Zhang & Shidong Ge, 2022. "Investigating the Trends and Drivers between Urbanization and the Land Surface Temperature: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    6. Xiaojing Feng & Jiahao Yu & Chuliang Xin & Tianhao Ye & Tian’ao Wang & Honglin Chen & Xuemei Zhang & Lili Zhang, 2023. "Quantifying and Comparing the Cooling Effects of Three Different Morphologies of Urban Parks in Chengdu," Land, MDPI, vol. 12(2), pages 1-21, February.
    7. Richard Smardon, 2020. "6th Fábos Conference on Landscape and Greenway Planning," Land, MDPI, vol. 9(11), pages 1-2, November.
    8. Xun Liu & Peng Zhou & Yichen Lin & Siwei Sun & Hailu Zhang & Wanqing Xu & Sangdi Yang, 2022. "Influencing Factors and Risk Assessment of Precipitation-Induced Flooding in Zhengzhou, China, Based on Random Forest and XGBoost Algorithms," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    9. Yunwei Zhang & Jili Zhang & Xiaoqian Zhang & Dian Zhou & Zhaolin Gu, 2020. "Analyzing the Characteristics of UHI (Urban Heat Island) in Summer Daytime Based on Observations on 50 Sites in 11 LCZ (Local Climate Zone) Types in Xi’an, China," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    10. Wei-Ling Hsu & Miao Qiao & Haiying Xu & Chunmei Zhang & Hsin-Lung Liu & Yan-Chyuan Shiau, 2021. "Smart City Governance Evaluation in the Era of Internet of Things: An Empirical Analysis of Jiangsu, China," Sustainability, MDPI, vol. 13(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huawei Li & Sandor Jombach & Guohang Tian & Yuanzheng Li & Handong Meng, 2022. "Characterizing Temporal Dynamics of Urban Heat Island in a Rapidly Expanding City: A 39 Years Study in Zhengzhou, China," Land, MDPI, vol. 11(10), pages 1-18, October.
    2. Xiaodong Huang & Wenkai Liu & Yuping Han & Chunying Wang & Han Wang & Sai Hu, 2019. "Performance Evaluation and Comparison of Modified Spectral Mixture Analysis Method for Different Images of Landsat Series Satellites," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    3. Chenyu Du & Peihao Song & Kun Wang & Ang Li & Yongge Hu & Kaihua Zhang & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Yangyang Zhang & Shidong Ge, 2022. "Investigating the Trends and Drivers between Urbanization and the Land Surface Temperature: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    4. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    5. Xuedong Li & Yunhui Liu & Yajuan Chen & Pengyao Li & Zhenrong Yu, 2019. "Village Regrouping in the Eastern Plains of China: A Perspective on Home-Field Distance," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    6. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    7. Juan Manuel Núñez & Andrea Santamaría & Leonardo Avila & D. A. Perez-De La Mora, 2024. "Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City," Land, MDPI, vol. 13(10), pages 1-16, October.
    8. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    9. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    10. Darshana Athukorala & Yuji Murayama, 2020. "Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    11. Yuan Feng & Kaihua Zhang & Ang Li & Yangyang Zhang & Kun Wang & Nan Guo & Ho Yi Wan & Xiaoyang Tan & Nalin Dong & Xin Xu & Ruizhen He & Bing Wang & Long Fan & Shidong Ge & Peihao Song, 2024. "Spatial and Seasonal Variation and the Driving Mechanism of the Thermal Effects of Urban Park Green Spaces in Zhengzhou, China," Land, MDPI, vol. 13(9), pages 1-25, September.
    12. Ran Goldblatt & Abdullah Addas & Daynan Crull & Ahmad Maghrabi & Gabriel Gene Levin & Steven Rubinyi, 2021. "Remotely Sensed Derived Land Surface Temperature (LST) as a Proxy for Air Temperature and Thermal Comfort at a Small Geographical Scale," Land, MDPI, vol. 10(4), pages 1-24, April.
    13. Kaihua Zhang & Guoliang Yun & Peihao Song & Kun Wang & Ang Li & Chenyu Du & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Xiaoxue Zhu & Shidong Ge, 2023. "Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    14. Monika Kopecká & Harini Nagendra & Andrew Millington, 2018. "Urban Land Systems: An Ecosystems Perspective," Land, MDPI, vol. 7(1), pages 1-4, January.
    15. Haroon Stephen, 2018. "Trend Analysis of Las Vegas Land Cover and Temperature Using Remote Sensing," Land, MDPI, vol. 7(4), pages 1-19, November.
    16. Dakota McCarty & Jaekyung Lee & Hyun Woo Kim, 2021. "Machine Learning Simulation of Land Cover Impact on Surface Urban Heat Island Surrounding Park Areas," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    17. Jianwei Gao & Haiting Han & Shidong Ge, 2023. "Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens," Land, MDPI, vol. 12(7), pages 1-19, July.
    18. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    19. Nikola Žižlavská & Tomáš Mikita & Zdeněk Patočka, 2021. "The Effects of Roadside Woody Vegetation on the Surface Temperature of Cycle Paths," Land, MDPI, vol. 10(5), pages 1-16, May.
    20. Vaclav Beran & Marek Teichmann & Frantisek Kuda & Renata Zdarilova, 2020. "Dynamics of Regional Development in Regional and Municipal Economy," Sustainability, MDPI, vol. 12(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:2:p:57-:d:320576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.