IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p25-d192154.html
   My bibliography  Save this article

Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria

Author

Listed:
  • DMSLB Dissanayake

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
    Department of Environmental Management, Faculty of Social Sciences and Humanities, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka)

  • Takehiro Morimoto

    (Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

  • Yuji Murayama

    (Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

  • Manjula Ranagalage

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
    Department of Environmental Management, Faculty of Social Sciences and Humanities, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka)

  • Hepi H. Handayani

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
    Geomatics Department, Institut Teknologi Sepuluh Nopember, Campus ITS Sukolilo, Surabaya, East Java 60111, Indonesia)

Abstract

The urban heat island (UHI) and its consequences have become a key research focus of various disciplines because of its negative externalities on urban ecology and the total livability of cities. Identifying spatial variation of the land surface temperature (LST) provides a clear picture to understand the UHI phenomenon, and it will help to introduce appropriate mitigation technique to address the advanced impact of UHI. Hence, the aim of the research is to examine the spatial variation of LST concerning the UHI phenomenon in rapidly urbanizing Lagos City. Four variables were examined to identify the impact of urban surface characteristics and socio-economic activities on LST. The gradient analysis was employed to assess the distribution outline of LST from the city center point to rural areas over the vegetation and built-up areas. Partial least square (PLS) regression analysis was used to assess the correlation and statistically significance of the variables. Landsat data captured in 2002 and 2013 were used as primary data sources and other gridded data, such as PD and FFCOE, were employed. The results of the analyses show that the distribution pattern of the LST in 2002 and 2013 has changed over the study period as results of changing urban surface characteristics (USC) and the influence of socio-economic activities. LST has a strong positive relationship with NDBI and a strong negative relationship with NDVI. The rapid development of Lagos City has been directly affected by conversion more green areas to build up areas over the time, and it has resulted in formulating more surface urban heat island (SUHI). Further, the increasing population and their socio-economic activities including industrialization and infrastructure development have also caused a significant impact on LST changes. We recommend that the results of this research be used as a proxy tool to introduce appropriate landscape and town planning in a sustainable viewpoint to make healthier and livable urban environments in Lagos City, Nigeria.

Suggested Citation

  • DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:25-:d:192154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tommaso Barbieri & Francesca Despini & Sergio Teggi, 2018. "A Multi-Temporal Analyses of Land Surface Temperature Using Landsat-8 Data and Open Source Software: The Case Study of Modena, Italy," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    2. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    3. O’Brien, Travis A. & Kashinath, Karthik & Cavanaugh, Nicholas R. & Collins, William D. & O’Brien, John P., 2016. "A fast and objective multidimensional kernel density estimation method: fastKDE," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 148-160.
    4. Manjula Ranagalage & Ronald C. Estoque & Hepi H. Handayani & Xinmin Zhang & Takehiro Morimoto & Takeo Tadono & Yuji Murayama, 2018. "Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    5. Drezner, Zvi, 1995. "Multirelation -- a correlation among more than two variables," Computational Statistics & Data Analysis, Elsevier, vol. 19(3), pages 283-292, March.
    6. Haiting Wang & Yuanzhi Zhang & Jin Yeu Tsou & Yu Li, 2017. "Surface Urban Heat Island Analysis of Shanghai (China) Based on the Change of Land Use and Land Cover," Sustainability, MDPI, vol. 9(9), pages 1-22, August.
    7. Kofo A Aderogba, 2011. "Greenhouse Gas Emissions and Sustainability in Lagos Metropolis, Nigeria," International Journal of Learning and Development, Macrothink Institute, vol. 1(2), pages 46-61, December.
    8. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    9. Manjula Ranagalage & Ronald C. Estoque & Xinmin Zhang & Yuji Murayama, 2018. "Spatial Changes of Urban Heat Island Formation in the Colombo District, Sri Lanka: Implications for Sustainability Planning," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    10. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    11. Min Min & Hongbo Zhao & Changhong Miao, 2018. "Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City, China," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Leal Filho & Franziska Wolf & Ricardo Castro-Díaz & Chunlan Li & Vincent N. Ojeh & Nestor Gutiérrez & Gustavo J. Nagy & Stevan Savić & Claudia E. Natenzon & Abul Quasem Al-Amin & Marija Maruna , 2021. "Addressing the Urban Heat Islands Effect: A Cross-Country Assessment of the Role of Green Infrastructure," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    2. Muhammad Sajid Mehmood & Zeeshan Zafar & Muhammad Sajjad & Sadam Hussain & Shiyan Zhai & Yaochen Qin, 2022. "Time Series Analyses and Forecasting of Surface Urban Heat Island Intensity Using ARIMA Model in Punjab, Pakistan," Land, MDPI, vol. 12(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manjula Ranagalage & Yuji Murayama & DMSLB Dissanayake & Matamyo Simwanda, 2019. "The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)," Sustainability, MDPI, vol. 11(19), pages 1-26, October.
    2. Auwalu Faisal Koko & Yue Wu & Ghali Abdullahi Abubakar & Akram Ahmed Noman Alabsi & Roknisadeh Hamed & Muhammed Bello, 2021. "Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria," Land, MDPI, vol. 10(11), pages 1-27, October.
    3. Anette Shekanino & Avaleen Agustin & Annette Aladefa & Jason Amezquita & Demetri Gonzalez & Emily Heldenbrand & Alyssa Hernandez & Maximus May & Anthony Nuno & Joshua Ojeda & Ashley Ortiz & Taylor Pun, 2023. "Differential Stomatal Responses to Surface Permeability by Sympatric Urban Tree Species Advance Novel Mitigation Strategy for Urban Heat Islands," Sustainability, MDPI, vol. 15(15), pages 1-11, August.
    4. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage, 2019. "Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016)," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    5. Abel Balew & Fisha Semaw, 2022. "Impacts of land-use and land-cover changes on surface urban heat islands in Addis Ababa city and its surrounding," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 832-866, January.
    6. Hongbo Zhao & Zhibin Ren & Juntao Tan, 2018. "The Spatial Patterns of Land Surface Temperature and Its Impact Factors: Spatial Non-Stationarity and Scale Effects Based on a Geographically-Weighted Regression Model," Sustainability, MDPI, vol. 10(7), pages 1-21, June.
    7. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    8. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    9. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    10. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    11. Jean-Louis Combes & Alexandru Minea & Pegdéwendé Nestor Sawadogo, 2019. "Assessing the effects of combating illicit financial flows on domestic tax revenue mobilization in developing countries," CERDI Working papers halshs-02019073, HAL.
    12. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    13. Ibrahim Ari & Muammer Koc, 2018. "Sustainable Financing for Sustainable Development: Understanding the Interrelations between Public Investment and Sovereign Debt," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    14. R. Ebrahimi & S. Choobchian & H. Farhadian & I. Goli & E. Farmandeh & H. Azadi, 2022. "Investigating the effect of vocational education and training on rural women’s empowerment," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    15. Benjamin Nölting & Bettina König & Anne B. Zimmermann & Antonietta Di Giulio & Martina Schäfer & Flurina Schneider, 2022. "Dealing with the COVID-19 pandemic: an opportunity to reflect on sustainability research," Sustainability Nexus Forum, Springer, vol. 30(1), pages 11-27, December.
    16. Rashmi Jaipal, 2017. "Psychology at the Crossroads," Psychology and Developing Societies, , vol. 29(2), pages 125-159, September.
    17. Bárbara Galleli & Elder Semprebon & Joyce Aparecida Ramos dos Santos & Noah Emanuel Brito Teles & Mateus Santos de Freitas-Martins & Raquel Teodoro da Silva Onevetch, 2021. "Institutional Pressures, Sustainable Development Goals and COVID-19: How Are Organisations Engaging?," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    18. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    19. Sagarika Dey & Priyanka Devi, 2019. "Impact of TVET on Labour Market Outcomes and Women’s Empowerment in Rural Areas: A Case Study from Cachar District, Assam," Indian Journal of Human Development, , vol. 13(3), pages 357-371, December.
    20. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:25-:d:192154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.