IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i5p483-d548688.html
   My bibliography  Save this article

The Effects of Roadside Woody Vegetation on the Surface Temperature of Cycle Paths

Author

Listed:
  • Nikola Žižlavská

    (Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic)

  • Tomáš Mikita

    (Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic)

  • Zdeněk Patočka

    (Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic)

Abstract

The article is on the effects of woody vegetation growing on the roadside on the temperature of the surface of cycle paths. The main hypothesis of the study is that vegetation has the effect of lowering the temperature of the surroundings in its shadow and thus improves the comfort of users of cycle paths in the summer months. The second hypothesis is to find out which type of road surface is most suitable for the thermal well-being of users. This goal was achieved by measuring the temperature of selected locations on cycle paths with different types of construction surfaces with nearby woody vegetation using a contactless thermometer over several days at regular intervals. The positions of the selected locations were measured using GNSS and the whole locality of interest was photographed using an unmanned aerial vehicle (UAV), or drone, and subsequently a digital surface model (DSM) of the area was created using a Structure from Motion (SfM) algorithm. This model served for the calculation of incident solar radiation during the selected days using the Solar Area Graphics tool with ArcGIS software. Subsequently, the effect of the shade of the surrounding vegetation on the temperature during the day was analysed and statistically evaluated. The results are presented in many graphs and their interpretation used to evaluate the effects of nearby woody vegetation and the type of road surface on the surrounding air temperature and the comfort of users of these routes. The results demonstrate the benefits of using UAVs for the purpose of modelling the course of solar radiation during the day, showing the effect of roadside vegetation on reducing the surface temperature of the earth’s surface and thus confirming the need for planting and maintaining such vegetation.

Suggested Citation

  • Nikola Žižlavská & Tomáš Mikita & Zdeněk Patočka, 2021. "The Effects of Roadside Woody Vegetation on the Surface Temperature of Cycle Paths," Land, MDPI, vol. 10(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:483-:d:548688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/5/483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/5/483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    2. Ben Ma & Tiantian Zhou & Shuo Lei & Yali Wen & Theint Theint Htun, 2019. "Effects of urban green spaces on residents’ well-being," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 2793-2809, December.
    3. Azad Rasul & Heiko Balzter & Claire Smith & John Remedios & Bashir Adamu & José A. Sobrino & Manat Srivanit & Qihao Weng, 2017. "A Review on Remote Sensing of Urban Heat and Cool Islands," Land, MDPI, vol. 6(2), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    2. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    3. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    4. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    6. Zhang Jingchao & Koji Kotani & Tatsuyoshi Saijo, 2021. "Are societies becoming proself? A topographical difference under fast urbanization in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12976-12993, September.
    7. Jae-Ik Kim & Myung-Jin Jun & Chang-Hwan Yeo & Ki-Hyun Kwon & Jun Yong Hyun, 2019. "The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    8. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    10. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    11. Chiarelli, A. & Dawson, A.R. & García, A., 2015. "Parametric analysis of energy harvesting pavements operated by air convection," Applied Energy, Elsevier, vol. 154(C), pages 951-958.
    12. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    13. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    14. Schneider, Philipp & Walz, Ariane & Albert, Christian & Lipp, Torsten, 2021. "Ecosystem-based adaptation in cities: Use of formal and informal planning instruments," Land Use Policy, Elsevier, vol. 109(C).
    15. Juan Manuel Núñez & Andrea Santamaría & Leonardo Avila & D. A. Perez-De La Mora, 2024. "Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City," Land, MDPI, vol. 13(10), pages 1-16, October.
    16. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    17. Miguel Centeno Brito, 2020. "Assessing the Impact of Photovoltaics on Rooftops and Facades in the Urban Micro-Climate," Energies, MDPI, vol. 13(11), pages 1-10, May.
    18. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    19. Kamruzzaman, Md. & Deilami, Kaveh & Yigitcanlar, Tan, 2018. "Investigating the urban heat island effect of transit oriented development in Brisbane," Journal of Transport Geography, Elsevier, vol. 66(C), pages 116-124.
    20. Wei Zhang & Feng Chen, 2018. "Impacts of Grading Rule on Urban Thermal Landscape Pattern Research," Sustainability, MDPI, vol. 10(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:483-:d:548688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.