IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1383-d1191246.html
   My bibliography  Save this article

Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens

Author

Listed:
  • Jianwei Gao

    (School of Economics, Tianjin University of Commerce, Tianjin 300134, China
    These authors contributed equally to this work.)

  • Haiting Han

    (Department of Food and Resource Economics, Københavns Universitet, Rolighedsvej 23, 1953 Frederiksberg C, Denmark
    Research and Impact Assessment Division, International Fund for Agricultural Development, 00142 Rome, Italy
    These authors contributed equally to this work.)

  • Shidong Ge

    (International Union Laboratory of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

Abstract

This article investigates the potential for carbon reduction in urban parks in Shangqiu City using high-resolution remote sensing imagery. The aim is to guide modern urban carbon neutrality strategies. The carbon-saving potential is estimated based on the mitigation of the urban heat island effect by park greenery, which reduces energy consumption. Then, the sample parks were divided into different categories, and 16 landscape metrics were selected to analyze their relationship with carbon-saving potential and driving factors. We found that a total of 300.57 t CO 2 could be reduced in Shangqiu City parks, and on average, a park could reduce 2.55 ± 0.31 t CO 2 (1.79 ± 0.29 t CO 2 ha −1 ) per summer day. The significant effect of landscape patterns on park carbon-saving differs between park categories, which means that park carbon-saving enhancement strategies need to be different for different park categories. Meanwhile, this study implies that the landscape pattern can be designed to enhance the carbon-saving potential of urban parks, which can play a great role in promoting the process of carbon neutrality and mitigating climate change in China.

Suggested Citation

  • Jianwei Gao & Haiting Han & Shidong Ge, 2023. "Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens," Land, MDPI, vol. 12(7), pages 1-19, July.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1383-:d:1191246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Sun & Xuebin Zhang & Guoyu Ren & Francis W. Zwiers & Ting Hu, 2016. "Contribution of urbanization to warming in China," Nature Climate Change, Nature, vol. 6(7), pages 706-709, July.
    2. Kaihua Zhang & Guoliang Yun & Peihao Song & Kun Wang & Ang Li & Chenyu Du & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Xiaoxue Zhu & Shidong Ge, 2023. "Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    3. Huawei Li & Guifang Wang & Guohang Tian & Sándor Jombach, 2020. "Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China," Land, MDPI, vol. 9(2), pages 1-17, February.
    4. Xiaoli Jia & Peihao Song & Guoliang Yun & Ang Li & Kun Wang & Kaihua Zhang & Chenyu Du & Yuan Feng & Kexin Qu & Meng Wu & Shidong Ge, 2022. "Effect of Landscape Structure on Land Surface Temperature in Different Essential Urban Land Use Categories: A Case Study in Jiaozuo, China," Land, MDPI, vol. 11(10), pages 1-18, September.
    5. Yue Jiang & Wenpeng Lin, 2021. "A Comparative Analysis of Retrieval Algorithms of Land Surface Temperature from Landsat-8 Data: A Case Study of Shanghai, China," IJERPH, MDPI, vol. 18(11), pages 1-18, May.
    6. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    7. Chenyu Du & Peihao Song & Kun Wang & Ang Li & Yongge Hu & Kaihua Zhang & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Yangyang Zhang & Shidong Ge, 2022. "Investigating the Trends and Drivers between Urbanization and the Land Surface Temperature: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    8. Xinjun Wang & Haoming Cheng & Juan Xi & Guoying Yang & Yanwen Zhao, 2018. "Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    9. Min Min & Hongbo Zhao & Changhong Miao, 2018. "Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City, China," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guohao Zhang & Chenyu Du & Shidong Ge, 2024. "Key Factors Affecting Carbon-Saving Intensity and Efficiency Based on the Structure of Green Space," Land, MDPI, vol. 13(8), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenyu Du & Peihao Song & Kun Wang & Ang Li & Yongge Hu & Kaihua Zhang & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Yangyang Zhang & Shidong Ge, 2022. "Investigating the Trends and Drivers between Urbanization and the Land Surface Temperature: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    2. Yuan Feng & Kaihua Zhang & Ang Li & Yangyang Zhang & Kun Wang & Nan Guo & Ho Yi Wan & Xiaoyang Tan & Nalin Dong & Xin Xu & Ruizhen He & Bing Wang & Long Fan & Shidong Ge & Peihao Song, 2024. "Spatial and Seasonal Variation and the Driving Mechanism of the Thermal Effects of Urban Park Green Spaces in Zhengzhou, China," Land, MDPI, vol. 13(9), pages 1-25, September.
    3. Kaihua Zhang & Guoliang Yun & Peihao Song & Kun Wang & Ang Li & Chenyu Du & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Xiaoxue Zhu & Shidong Ge, 2023. "Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    4. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.
    5. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    6. Pengke Shen & Shuqing Zhao, 2021. "1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes," Climatic Change, Springer, vol. 164(3), pages 1-19, February.
    7. Rui Wang & Qi Chen & Dexiang Wang, 2022. "Effects of Altitude, Plant Communities, and Canopies on the Thermal Comfort, Negative Air Ions, and Airborne Particles of Mountain Forests in Summer," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    8. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    9. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    10. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    11. Frankie Fanjie Zeng & Jiajun Feng & Yuanzhi Zhang & Jin Yeu Tsou & Tengfei Xue & Yu Li & Rita Yi Man Li, 2021. "Comparative Study of Factors Contributing to Land Surface Temperature in High-Density Built Environments in Megacities Using Satellite Imagery," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    12. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    14. Fang Han & Fei Zhao & Fuxing Li & Xiaoli Shi & Qiang Wei & Weimiao Li & Wei Wang, 2023. "Improvement of Monitoring Production Status of Iron and Steel Factories Based on Thermal Infrared Remote Sensing," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    15. Zeng, Lijun & Zhao, Yue & Wang, Xilian, 2022. "How to develop the new urbanization in mineral resources abundant regions in China? A VIKOR-based path matching model," Resources Policy, Elsevier, vol. 79(C).
    16. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Shaojing Jiang, 2023. "Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region," IJERPH, MDPI, vol. 20(8), pages 1-15, April.
    18. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    19. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Rituraj Neog & Shukla Acharjee & Jiten Hazarika, 2021. "Spatiotemporal analysis of road surface temperature (RST) and building wall temperature (BWT) and its relation to the traffic volume at Jorhat urban environment, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10080-10092, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1383-:d:1191246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.