IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1264-d1454421.html
   My bibliography  Save this article

Comparative Study of the Impacts of Maize and Soybean on Soil and Water Conservation Benefits during Different Growth Stages in the Loess Plateau Region

Author

Listed:
  • Qian Xu

    (College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
    State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China)

  • Qingtao Lin

    (College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
    State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China)

  • Faqi Wu

    (State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China)

Abstract

Maize ( Zea mays L.) and soybean ( Glycine max L. Merr.) are prevalent summer crops planted widely in the Loess Plateau region of China, which is particularly susceptible to severe soil erosion on the sloping farmland. However, which crop exhibits superior soil and water conservation capabilities while maintaining economic viability, and how their performance in soil and water conservation is affected by slope gradient and rainfall intensity remains unclear. The objective of this study was to compare the impacts of maize and soybean on regulating runoff and sediment through rainfall simulation experiments, and explore the main control factors of soil and water conservation benefits. Five slope gradients (8.7, 17.6, 26.8, 36.4, and 46.6%) and two rainfall intensities (40 and 80 mm h −1 ) were applied at five respective crop growth stages. Both maize and soybean effectively reduced soil and water losses compared with bare ground, although increasing slope gradient and rainfall intensity weakened the vegetation effect. Compared with slope gradient and rainfall intensity, vegetation coverage was the main factor affecting the performance of maize and soybean in conserving soil and water. The average time delay benefit (TDB), runoff reduction benefit (RRB), and sediment reduction benefit (SRB) of soybean (246.48 ± 11.71, 36.34 ± 2.51, and 54.41 ± 3.42%) were significantly higher ( p < 0.05) than those of maize (100.06 ± 6.81, 25.71 ± 1.76, and 43.70 ± 2.91%, respectively) throughout growth. After planting, the increasing rates of vegetation coverage, TDB, RRB, and SRB with time were consistently higher with soybean than maize. Moreover, under the same vegetation coverage, the TDB, RRB, and SRB of soybean were also consistently higher than those of maize. In conclusion, these findings indicate that soybean outperformed maize in terms of soil and water conservation benefits under the experimental conditions, making it more suitable for cultivation on sloping farmland. This finding offers crucial guidance for the cultivation of dry farming in regions plagued by severe soil erosion, facilitating a balance between economic objectives and ecological imperatives.

Suggested Citation

  • Qian Xu & Qingtao Lin & Faqi Wu, 2024. "Comparative Study of the Impacts of Maize and Soybean on Soil and Water Conservation Benefits during Different Growth Stages in the Loess Plateau Region," Land, MDPI, vol. 13(8), pages 1-22, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1264-:d:1454421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang, Yaohu & Wang, Qing-Gai & Liu, Hai-Jun, 2005. "Winter wheat canopy interception and its influence factors under sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 189-199, June.
    2. Liu, Haijun & Zhang, Ruihao & Zhang, Liwei & Wang, Xuming & Li, Yan & Huang, Guanhua, 2015. "Stemflow of water on maize and its influencing factors," Agricultural Water Management, Elsevier, vol. 158(C), pages 35-41.
    3. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Yan, Shicheng & Xiang, Youzhen, 2018. "Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 195(C), pages 25-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fucui Wang & Hu Tao & Xi Shi & Shilong Bu & Ziming Bao & Dezhi Zhang, 2024. "Study on the Sand Reduction Effect of Slope Vegetation Combination in Loess Areas," Sustainability, MDPI, vol. 16(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Liu, Yutong & Lu, Yili & Sadeghi, Morteza & Horton, Robert & Ren, Tusheng, 2024. "Measurement and estimation of evapotranspiration in a maize field: A new method based on an analytical water flux model," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Wang, Di & Wang, Li & Zhang, Rui, 2022. "Measurement and modeling of canopy interception losses by two differently aged apple orchards in a subhumid region of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Zhu, Zhongrui & Li, Jiusheng & Zhu, Delan, 2024. "Influence of biotic and abiotic factors and water partitioning on the kinetic energy of sprinkler irrigation on a maize canopy," Agricultural Water Management, Elsevier, vol. 293(C).
    5. Zhang, Rui & Seki, Katsutoshi & Wang, Li, 2023. "Quantifying the contribution of meteorological factors and plant traits to canopy interception under maize cropland," Agricultural Water Management, Elsevier, vol. 279(C).
    6. Haijun Liu & Jie Chang & Xiaopei Tang & Jinping Zhang, 2022. "In Situ Measurement of Stemflow, Throughfall and Canopy Interception of Sprinkler Irrigation Water in a Wheat Field," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    7. Wang, Yunling & Li, Maona & Hui, Xin & Meng, Yangyang & Yan, Haijun, 2020. "Alfalfa canopy water interception under low-pressure sprinklers," Agricultural Water Management, Elsevier, vol. 230(C).
    8. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    9. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    11. Václav BRANT & Petr ZÁBRANSKÝ & Michaela ŠKEŘÍKOVÁ & Jan PIVEC & Milan KROULÍK & Luděk PROCHÁZKA, 2017. "Effect of row width on splash erosion and throughfall in silage maize crops," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(1), pages 39-50.
    12. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinhua & Zhang, Bing, 2012. "Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation," Agricultural Water Management, Elsevier, vol. 105(C), pages 32-37.
    13. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    15. David Kincl & Pavel Formánek & Jan Vopravil & Pavel Nerušil & Ladislav Menšík & Jaroslava Janků, 2022. "Soil-conservation effect of intercrops in silage maize," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(3), pages 180-190.
    16. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    17. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Qiang, Shengcai & Zheng, Jing & Xiang, Youzhen & Guo, Jinjin & Zou, Haiyang, 2019. "Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat," Agricultural Water Management, Elsevier, vol. 213(C), pages 983-995.
    20. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Yan, Shicheng & Zhuang, Qianlai & Cui, Ningbo & Guo, Li, 2021. "Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China," Agricultural Water Management, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1264-:d:1454421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.