IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v105y2012icp32-37.html
   My bibliography  Save this article

Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation

Author

Listed:
  • Wang, Peng
  • Song, Xianfang
  • Han, Dongmei
  • Zhang, Yinhua
  • Zhang, Bing

Abstract

The flux of evaporation, transpiration and deep percolation play an important role in agricultural water management. In this study, oxygen-18 was used to determine the three fluxes in the summer corn and winter wheat field under existing irrigation pattern in Shanxi Province, China. Precipitation, irrigation water, soil water, groundwater and stem water were sampled for oxygen-18 analyses, and supported by hydrological observations. By the method of soil water balance and isotope mass balance, combined with eddy correlation method, the following results are reached. After the irrigation on August 11th, 2008 for summer corn (flowering stage, 90mm, flood irrigation), transpiration of corn accounts for 71.3% of total evapotranspiration, and the irrigation water use efficiency is 38.0%. And after the irrigation on March 15th, 2009 for winter wheat (re-green stage, 110mm, sprinkler irrigation), transpiration of winter wheat accounts for 61.7% of evapotranspiration, and the irrigation water use efficiency is 42.3%. Compared to flood irrigation, the deep percolation loss of irrigation water under sprinkler irrigation is lower, especially in the first day after irrigation. Overall, the existing irrigation efficiency is low in study area, and measures should be taken to reduce the deep percolation after irrigation.

Suggested Citation

  • Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinhua & Zhang, Bing, 2012. "Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation," Agricultural Water Management, Elsevier, vol. 105(C), pages 32-37.
  • Handle: RePEc:eee:agiwat:v:105:y:2012:i:c:p:32-37
    DOI: 10.1016/j.agwat.2011.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412000029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Yaohu & Wang, Qing-Gai & Liu, Hai-Jun, 2005. "Winter wheat canopy interception and its influence factors under sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 189-199, June.
    2. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinghua & Liu, Xin, 2010. "A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China," Agricultural Water Management, Elsevier, vol. 97(3), pages 475-482, March.
    3. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    4. López-Urrea, R. & Montoro, A. & González-Piqueras, J. & López-Fuster, P. & Fereres, E., 2009. "Water use of spring wheat to raise water productivity," Agricultural Water Management, Elsevier, vol. 96(9), pages 1305-1310, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian, Huajian & Gao, Zhen & Guo, Yingying & Xu, Xinyan & Li, Xiaoyu & Yu, Meijia & Liu, Guangzhou & Bian, Dahong & Cui, Yanhong & Du, Xiong, 2024. "Supplemental irrigation mitigates yield loss of maize through reducing canopy temperature under heat stress," Agricultural Water Management, Elsevier, vol. 299(C).
    2. Daniel G. Gómez & Carlos G. Ochoa & Derek Godwin & Abigail A. Tomasek & María I. Zamora Re, 2022. "Soil Moisture and Water Transport through the Vadose Zone and into the Shallow Aquifer: Field Observations in Irrigated and Non-Irrigated Pasture Fields," Land, MDPI, vol. 11(11), pages 1-17, November.
    3. Hu, Yajin & Ma, Penghui & Wu, Shufang & Sun, Benhua & Feng, Hao & Pan, Xiaolian & Zhang, Binbin & Chen, Guangjie & Duan, Chenxiao & Lei, Qi & Siddique, Kadambot H.M. & Liu, Boyang, 2020. "Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Xu, Baoli & Shao, Dongguo & Tan, Xuezhi & Yang, Xia & Gu, Wenquan & Li, Haoxin, 2017. "Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields," Agricultural Water Management, Elsevier, vol. 192(C), pages 149-158.
    6. Xu, Jing & Guo, Ziyan & Li, Zhimin & Li, Fangjian & Xue, Xuanke & Wu, Xiaorong & Zhang, Xuemei & Li, Hui & Zhang, Xudong & Han, Qingfang, 2021. "Stable oxygen isotope analysis of the water uptake mechanism via the roots in spring maize under the ridge–furrow rainwater harvesting system in a semi-arid region," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Li, Jiang & Wang, Xinxin & Bai, Liangliang & Mao, Xiaomin, 2017. "Quantification of lateral seepage from farmland during maize growing season in arid region," Agricultural Water Management, Elsevier, vol. 191(C), pages 85-97.
    8. Er-Raki, S. & Ezzahar, J. & Merlin, O. & Amazirh, A. & Hssaine, B. Ait & Kharrou, M.H. & Khabba, S. & Chehbouni, A., 2021. "Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    2. Helman, David & Bonfil, David J. & Lensky, Itamar M., 2019. "Crop RS-Met: A biophysical evapotranspiration and root-zone soil water content model for crops based on proximal sensing and meteorological data," Agricultural Water Management, Elsevier, vol. 211(C), pages 210-219.
    3. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    4. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    5. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    6. Zhang, Yongyong & Wu, Shaoxiong & Kang, Wenrong & Tian, Zihan, 2022. "Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Wu, Youjie & Du, Taisheng & Ding, Risheng & Yuan, Yusen & Li, Sien & Tong, Ling, 2017. "An isotope method to quantify soil evaporation and evaluate water vapor movement under plastic film mulch," Agricultural Water Management, Elsevier, vol. 184(C), pages 59-66.
    9. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    10. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Droogers, P. & Immerzeel, W.W. & Lorite, I.J., 2010. "Estimating actual irrigation application by remotely sensed evapotranspiration observations," Agricultural Water Management, Elsevier, vol. 97(9), pages 1351-1359, September.
    13. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    14. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    15. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    17. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    19. Wang, Di & Wang, Li & Zhang, Rui, 2022. "Measurement and modeling of canopy interception losses by two differently aged apple orchards in a subhumid region of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:105:y:2012:i:c:p:32-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.