IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9132-d1503464.html
   My bibliography  Save this article

Study on the Sand Reduction Effect of Slope Vegetation Combination in Loess Areas

Author

Listed:
  • Fucui Wang

    (School of Civil Engineering, Lanzhou Jiaotong University, Anning District, Lanzhou 730070, China)

  • Hu Tao

    (School of Civil Engineering, Lanzhou Jiaotong University, Anning District, Lanzhou 730070, China)

  • Xi Shi

    (School of Civil Engineering, Lanzhou Jiaotong University, Anning District, Lanzhou 730070, China)

  • Shilong Bu

    (School of Civil Engineering, Lanzhou Jiaotong University, Anning District, Lanzhou 730070, China)

  • Ziming Bao

    (School of Civil Engineering, Lanzhou Jiaotong University, Anning District, Lanzhou 730070, China)

  • Dezhi Zhang

    (School of Civil Engineering, Lanzhou Jiaotong University, Anning District, Lanzhou 730070, China)

Abstract

Slope erosion in the Loess Plateau region has long been a concern, and vegetation plays an important role in slowing down erosion and controlling sedimentation. However, a single vegetation model shows some limitations when facing complex natural conditions and variable rainfall events. Therefore, this study investigated the influence mechanism of vegetation configuration on slope sand production at different slopes through theoretical analyses and indoor experiments. The results of the study showed that certain factors, such as vegetation configuration mode, flow rate, runoff power, runoff velocity, and runoff shear, are closely related to slope runoff sand production. The specific findings are as follows: (1) Under the condition of slope gradient of 2°, the sand reduction effect of the rigid–flexible single-row staggered configuration is the most significant, and the sediment production is reduced by 29.89%. (2) With the increase in the slope gradient and flow rate, the sand production on the slope surface rises significantly, and when the slope gradient is increased from 2° to 6°, the average sand production is increased from 1.43 kg to 2.51 kg.(3) The erosion reduction effects of different vegetation configurations were in the order of rigid–flexible single-row staggered combination > flexible vegetation single combination > rigid–flexible double-row staggered combination > rigid vegetation single combination > upstream rigid downstream flexible combination > bare slope. This study provides a theoretical basis for optimizing the vegetation configuration for effective sand reduction and provides an important reference for the sustainable development of the Yellow River Basin.

Suggested Citation

  • Fucui Wang & Hu Tao & Xi Shi & Shilong Bu & Ziming Bao & Dezhi Zhang, 2024. "Study on the Sand Reduction Effect of Slope Vegetation Combination in Loess Areas," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9132-:d:1503464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia Zhang & Guo Yu & Zhan Li & Peng Li, 2014. "Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2415-2433, July.
    2. Qian Xu & Qingtao Lin & Faqi Wu, 2024. "Comparative Study of the Impacts of Maize and Soybean on Soil and Water Conservation Benefits during Different Growth Stages in the Loess Plateau Region," Land, MDPI, vol. 13(8), pages 1-22, August.
    3. Yifan Zhang & Qinghe Zhao & Zihao Cao & Shengyan Ding, 2019. "Inhibiting Effects of Vegetation on the Characteristics of Runoff and Sediment Yield on Riparian Slope along the Lower Yellow River," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinping Zhang & Yong Zhao & Weihua Xiao, 2015. "Multi-Resolution Cointegration Prediction for Runoff and Sediment Load," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3601-3613, August.
    2. Jianbo Liu & Guangyao Gao & Bing Zhang, 2023. "Effect of Shrub Components on Soil Water and Its Response to Precipitation at Different Time Scales in the Loess Plateau," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    3. Tomasz Zubala, 2022. "The Working Conditions and Optimisation of a Large Rainwater Harvesting and Treatment System in an Area at a Risk of Erosion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 135-152, January.
    4. Xiaoxin Li & Ruichen Mao & Jinxi Song & Junqing Gao & Aying Shi & Wei Xiang & Haotian Sun, 2024. "Response of Runoff Change to Soil and Water Conservation Measures in the Jing River Catchment of China," Land, MDPI, vol. 13(4), pages 1-21, March.
    5. Julio Cesar Neves Santos & Eunice Maia Andrade & Pedro Henrique Augusto Medeiros & Maria João Simas Guerreiro & Helba Araújo Queiroz Palácio, 2017. "Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 173-185, January.
    6. Qinghe Zhao & Yifan Zhang & Shanshan Xu & Xiaoyu Ji & Shuoqian Wang & Shengyan Ding, 2019. "Relationships between Riparian Vegetation Pattern and the Hydraulic Characteristics of Upslope Runoff," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    7. Bagher Shirmohammadi & Arash Malekian & Saeid Varamesh & Abolfazl Jaafari & Javad Abdolahi & Saeed Shahbazikia & Mohammad Mohsenzadeh, 2024. "How can biomechanical measures incorporate climate change adaptation into disaster risk reduction and ecosystem sustainability?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8323-8336, July.
    8. Thiago Augusto Mendes & Sávio Aparecido dos Santos Pereira & Juan Félix Rodriguez Rebolledo & Gilson de Farias Neves Gitirana & Maria Tereza da Silva Melo & Marta Pereira da Luz, 2021. "Development of a Rainfall and Runoff Simulator for Performing Hydrological and Geotechnical Tests," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    9. Moses Adah Abua & Anthony Inah Iwara & Violet Bassey Eneyo & Nsikan Anthony Akpan & Anim Obongha Ajake & Saad S. Alarifi & David Gómez-Ortiz & Ahmed M. Eldosouky, 2023. "Runoff, Sediment Loss and the Attenuating Effectiveness of Vegetation Parameters in the Rainforest Zone of Southeastern Nigeria," Sustainability, MDPI, vol. 15(7), pages 1-16, April.
    10. Ferhat Gökbulak & Kamil Şengönül & Yusuf Serengil & Süleyman Özhan & İbrahim Yurtseven & Betül Uygur & Mehmet Said Özçelik, 2016. "Effect of Forest Thinning on Water Yield in a Sub-Humid Mediterranean Oak-Beech Mixed Forested Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5039-5049, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9132-:d:1503464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.