IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v20y2020i1d10.1007_s11067-019-09465-6.html
   My bibliography  Save this article

Impact of Weather Conditions and Built Environment on Public Bikesharing Trips in Beijing

Author

Listed:
  • Pengfei Lin

    (Beijing University of Technology)

  • Jiancheng Weng

    (Beijing University of Technology)

  • Quan Liang

    (Beijing University of Technology)

  • Dimitrios Alivanistos

    (Vrije Universiteit Amsterdam)

  • Siyong Ma

    (Beijing University of Technology)

Abstract

As bicycling regains popularity around the world, the Beijing Public Bikesharing System, launched in 2012, enables users to access shared bicycles for short trips. After five years of operation, while the system is widely used, it faces the problems of bike unavailability and dock shortage at various stations due to the tidal characteristics of bicycle travel. It is necessary to investigate the influence of different weather conditions and nearby built station environments on bikesharing trips. Using historical trip data from 2016 concerning 543 stations in Beijing, log-linear regression models are developed to estimate the impact of daily weather and time events on bikesharing trips. Moreover, the effects of built environment variables, such as land use and transport infrastructure, are investigated both on workday and non-workday usage at the station level. The results indicate that temperature is not linearly associated with daily usage. Daily usage decreases according to rainfall, snowfall, wind speed and weekends/holidays. Light and heavy pollution have no significant influence on bikesharing demand; however, severe pollution has a negative influence on usage. The effect of transport infrastructure (subway stations, bus stops and bikeway length) is crucial in increasing bikesharing demand. The number of residential and shopping locations is generally associated with usage. Proximity to colleges does not show an obvious usage increase, which is different from the results obtained in other cities. Parks encourage more bikesharing usage on weekends/holidays than on workdays. The findings may help planners or managers to design and modify public bikesharing stations effectively, increasing usage while reducing rebalance costs.

Suggested Citation

  • Pengfei Lin & Jiancheng Weng & Quan Liang & Dimitrios Alivanistos & Siyong Ma, 2020. "Impact of Weather Conditions and Built Environment on Public Bikesharing Trips in Beijing," Networks and Spatial Economics, Springer, vol. 20(1), pages 1-17, March.
  • Handle: RePEc:kap:netspa:v:20:y:2020:i:1:d:10.1007_s11067-019-09465-6
    DOI: 10.1007/s11067-019-09465-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-019-09465-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-019-09465-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohen, Adam & Shaheen, Susan PhD, 2018. "Planning for Shared Mobility," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dk3h89p, Institute of Transportation Studies, UC Berkeley.
    2. Shaheen, Susan & Cohen, Adam & Zohdy, Ismail & Kock, Beaudry, 2016. "Smartphone Applications to Influence Travel Choices: Practices and Policies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8dq801g7, Institute of Transportation Studies, UC Berkeley.
    3. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    4. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    5. Bergström, A. & Magnusson, R., 2003. "Potential of transferring car trips to bicycle during winter," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 649-666, October.
    6. Martin, Elliot W. & Shaheen, Susan A., 2014. "Evaluating public transit modal shift dynamics in response to bikesharing: a tale of two U.S. cities," Journal of Transport Geography, Elsevier, vol. 41(C), pages 315-324.
    7. Martin, Elliot PhD & Shaheen, Susan PhD, 2014. "Evaluating Public Transit Modal Shift Dynamics In Response to Bikesharing: A Tale of Two U.S. Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6x29n876, Institute of Transportation Studies, UC Berkeley.
    8. Shang-Yu Chen & Chung-Cheng Lu, 2016. "A Model of Green Acceptance and Intentions to Use Bike-Sharing: YouBike Users in Taiwan," Networks and Spatial Economics, Springer, vol. 16(4), pages 1103-1124, December.
    9. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    10. Tom Thomas & Rinus Jaarsma & Bas Tutert, 2013. "Exploring temporal fluctuations of daily cycling demand on Dutch cycle paths: the influence of weather on cycling," Transportation, Springer, vol. 40(1), pages 1-22, January.
    11. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    12. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    13. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christensen, Peter & Osman, Adam & Stocker, Abigail, 2024. "Weathering the ride: Experimental evidence on transport pricing, climate extremes, and future travel demand," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    2. Gao, Kun & Yang, Ying & Gil, Jorge & Qu, Xiaobo, 2023. "Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility," Journal of Transport Geography, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Beibei & Zhong, Zhenfang & Zhang, Yanli & Sun, Yue & Jiang, Li & Dong, Xianlei & Sun, Huijun, 2022. "Understanding the influencing factors of bicycle-sharing demand based on residents’ trips," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    4. Bakó, Barna & Berezvai, Zombor & Isztin, Péter & Vigh, Enikő Zita, 2020. "Does Uber affect bicycle-sharing usage? Evidence from a natural experiment in Budapest," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 290-302.
    5. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    6. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.
    7. Xiaofeng Li & Yao-Jan Wu & Alireza Khani, 2022. "Investigating a small-sized bike-sharing system’s impact on transit usage: a synthetic control analysis in Tucson, Arizona," Public Transport, Springer, vol. 14(2), pages 441-458, June.
    8. Bakó, Barna & Isztin, Péter & Berezvai, Zombor & Cseke, Petra Zsuzsanna, 2019. "Infrastruktúra-bővítés világversenyek idején. A Mol Bubi esete a FINA világbajnoksággal [Infrastructural investments for international sports events. Network expansion of the MOL Bubi bicycle-shari," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 4-21.
    9. De Zhao & Ghim Ping Ong & Wei Wang & Wei Zhou, 2021. "Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    10. Wang, Ruoxuan & Wu, Jianping & Qi, Geqi, 2022. "Exploring regional sustainable commuting patterns based on dockless bike-sharing data and POI data," Journal of Transport Geography, Elsevier, vol. 102(C).
    11. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    12. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    13. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.
    14. Xie, Xiao-Feng & Wang, Zunjing Jenipher, 2018. "Examining travel patterns and characteristics in a bikesharing network and implications for data-driven decision supports: Case study in the Washington DC area," Journal of Transport Geography, Elsevier, vol. 71(C), pages 84-102.
    15. Renata Żochowska & Marianna Jacyna & Marcin Jacek Kłos & Piotr Soczówka, 2021. "A GIS-Based Method of the Assessment of Spatial Integration of Bike-Sharing Stations," Sustainability, MDPI, vol. 13(7), pages 1-29, April.
    16. Yi Zhu, 2022. "Can bicycle sharing mitigate vehicle emission in Chinese large cities? Estimation based on mode shift analysis," Transportation, Springer, vol. 49(6), pages 1627-1648, December.
    17. Shruthi Kaviti & Mohan M. Venigalla & Shanjiang Zhu & Kimberly Lucas & Stefanie Brodie, 2020. "Impact of pricing and transit disruptions on bikeshare ridership and revenue," Transportation, Springer, vol. 47(2), pages 641-662, April.
    18. Wessel, Jan, 2020. "Using weather forecasts to forecast whether bikes are used," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 537-559.
    19. Mariano J. Rabassa & Mariana Conte Grand & Christian M. García-Witulski, 2021. "Heat warnings and avoidance behavior: evidence from a bike-sharing system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 1-28, January.
    20. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:20:y:2020:i:1:d:10.1007_s11067-019-09465-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.