IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v98y2022ics0966692321003240.html
   My bibliography  Save this article

Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bikesharing systems

Author

Listed:
  • Hu, Songhua
  • Chen, Mingyang
  • Jiang, Yuan
  • Sun, Wei
  • Xiong, Chenfeng

Abstract

Dockless bikesharing (DBS) has been considered as a solution to the first and last mile problem of metro connectivity. Leveraging data covering all DBS programs in Shanghai, China, this study evaluated bike-and-ride (BnR) activities in DBS-metro systems via four metrics: BnR trip count, BnR rate, shared-bike utilization rate, and catchment size (85th percentile transfer distance). A set of generalized additive models considering marginal nonlinear interactions was fitted to examine associations between the four metrics and external environment, including land use, socio-demographics, roadway designs, transportation facilities, metro station features, and DBS operator features. Different buffer sizes measured by network distance were tested to check model robustness and find optimal buffers. Results showed that: 1) metro stations near the city center exhibited greater BnR trip count, higher BnR rate, lower shared-bike utilization rate, and smaller catchment size; 2) proportion of public and residential land suggested positive relationships with BnR trip count but lose their significances after offsetting metro ridership; 3) numbers of colleges, shopping malls, and carsharing stations presented positive relationships with both BnR trip count and BnR rate; 4) land use mix was significantly positively associated with BnR trip count only when buffer size was larger than 1.5 km; 5) regions with higher population density went from less BnR activities in the city center to more BnR activities in the suburbs; 6) Large DBS operators outperformed small ones in BnR trip count but not in bike utilization rate. Taken together, this study uncovers a spatially disproportionate and supply-demand unbalanced distribution of DBS resources, which could attenuate the efficiency and attractiveness of using DBS to BnR. DBS operators and local governments should evaluate DBS systems from multiple perspectives to avoid an oversupplied and over-competing market.

Suggested Citation

  • Hu, Songhua & Chen, Mingyang & Jiang, Yuan & Sun, Wei & Xiong, Chenfeng, 2022. "Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bikesharing systems," Journal of Transport Geography, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:jotrge:v:98:y:2022:i:c:s0966692321003240
    DOI: 10.1016/j.jtrangeo.2021.103271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692321003240
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2021.103271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    2. Shaheen, Susan PhD & Cohen, Adam, 2019. "Shared Micromoblity Policy Toolkit: Docked and Dockless Bike and Scooter Sharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt00k897b5, Institute of Transportation Studies, UC Berkeley.
    3. Guo, Yuanyuan & He, Sylvia Y., 2021. "The role of objective and perceived built environments in affecting dockless bike-sharing as a feeder mode choice of metro commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 377-396.
    4. Martin, Elliot W. & Shaheen, Susan A., 2014. "Evaluating public transit modal shift dynamics in response to bikesharing: a tale of two U.S. cities," Journal of Transport Geography, Elsevier, vol. 41(C), pages 315-324.
    5. Xinwei Ma & Yanjie Ji & Yuchuan Jin & Jianbiao Wang & Mingjia He, 2018. "Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    6. Martin, Elliot PhD & Shaheen, Susan PhD, 2014. "Evaluating Public Transit Modal Shift Dynamics In Response to Bikesharing: A Tale of Two U.S. Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6x29n876, Institute of Transportation Studies, UC Berkeley.
    7. Schimohr, Katja & Scheiner, Joachim, 2021. "Spatial and temporal analysis of bike-sharing use in Cologne taking into account a public transit disruption," Journal of Transport Geography, Elsevier, vol. 92(C).
    8. Shaheen, Susan PhD & Cohen, Adam & Chan, Nelson & Bansal, Apaar, 2020. "Chapter 13 - Sharing strategies: carsharing, shared micromobility (bikesharing and scooter sharing), transportation network companies, microtransit, and other innovative mobility modes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0z9711dw, Institute of Transportation Studies, UC Berkeley.
    9. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Determining the role of bicycle sharing system infrastructure installation decision on usage: Case study of montreal BIXI system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 685-698.
    10. Ma, Xinwei & Ji, Yanjie & Yang, Mingyuan & Jin, Yuchuan & Tan, Xu, 2018. "Understanding bikeshare mode as a feeder to metro by isolating metro-bikeshare transfers from smart card data," Transport Policy, Elsevier, vol. 71(C), pages 57-69.
    11. Mooney, Stephen J. & Hosford, Kate & Howe, Bill & Yan, An & Winters, Meghan & Bassok, Alon & Hirsch, Jana A., 2019. "Freedom from the station: Spatial equity in access to dockless bike share," Journal of Transport Geography, Elsevier, vol. 74(C), pages 91-96.
    12. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    13. Li, Aoyong & Zhao, Pengxiang & Huang, Yizhe & Gao, Kun & Axhausen, Kay W., 2020. "An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Simon N. Wood, 2006. "Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1025-1036, December.
    15. Li, Wenxiang & Chen, Shawen & Dong, Jieshuang & Wu, Jingxian, 2021. "Exploring the spatial variations of transfer distances between dockless bike-sharing systems and metros," Journal of Transport Geography, Elsevier, vol. 92(C).
    16. Han, Sun Sheng, 2020. "The spatial spread of dockless bike-sharing programs among Chinese cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    17. Yanjie Ji & Xinwei Ma & Mingyuan Yang & Yuchuan Jin & Liangpeng Gao, 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    18. Wu, Xueying & Lu, Yi & Gong, Yongxi & Kang, Yuhao & Yang, Linchuan & Gou, Zhonghua, 2021. "The impacts of the built environment on bicycle-metro transfer trips: A new method to delineate metro catchment area based on people's actual cycling space," Journal of Transport Geography, Elsevier, vol. 97(C).
    19. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    20. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    21. Hu, Songhua & Xiong, Chenfeng & Liu, Zhanqin & Zhang, Lei, 2021. "Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 91(C).
    22. Zheyan Chen & Dea van Lierop & Dick Ettema, 2020. "Dockless bike-sharing systems: what are the implications?," Transport Reviews, Taylor & Francis Journals, vol. 40(3), pages 333-353, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Songhua & Xiong, Chenfeng & Chen, Peng & Schonfeld, Paul, 2023. "Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    2. Bi, Hui & Gao, Hui & Li, Aoyong & Ye, Zhirui, 2024. "Using topic modeling to unravel the nuanced effects of built environment on bicycle-metro integrated usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    3. Liu, Yang & Feng, Tao & Shi, Zhuangbin & He, Mingwei, 2022. "Understanding the route choice behaviour of metro-bikeshare users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 460-475.
    4. Lv, Huitao & Li, Haojie & Chen, Yanlu & Feng, Tao, 2023. "An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 113(C).
    5. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    6. Zhao, Yingrui & Hu, Songhua & Zhang, Ming, 2024. "Evaluating equitable Transit-Oriented development (TOD) via the Node-Place-People model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    7. Hu, Songhua & Xiong, Chenfeng & Ji, Ya & Wu, Xin & Liu, Kailun & Schonfeld, Paul, 2024. "Understanding factors influencing user engagement in incentive-based travel demand management program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhu, 2022. "Can bicycle sharing mitigate vehicle emission in Chinese large cities? Estimation based on mode shift analysis," Transportation, Springer, vol. 49(6), pages 1627-1648, December.
    2. Bi, Hui & Gao, Hui & Li, Aoyong & Ye, Zhirui, 2024. "Using topic modeling to unravel the nuanced effects of built environment on bicycle-metro integrated usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    3. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    4. Wang, Yacan & Li, Jingjing & Su, Duan & Zhou, Huiyu, 2023. "Spatial-temporal heterogeneity and built environment nonlinearity in inconsiderate parking of dockless bike-sharing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    5. Jin, Scarlett T. & Sui, Daniel Z., 2024. "A comparative analysis of the spatial determinants of e-bike and e-scooter sharing link flows," Journal of Transport Geography, Elsevier, vol. 119(C).
    6. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    7. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    8. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    9. Liu, Yang & Feng, Tao & Shi, Zhuangbin & He, Mingwei, 2022. "Understanding the route choice behaviour of metro-bikeshare users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 460-475.
    10. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    11. Zhang, Ziru & Krishnakumari, Panchamy & Schulte, Frederik & van Oort, Niels, 2023. "Improving the service of E-bike sharing by demand pattern analysis: A data-driven approach," Research in Transportation Economics, Elsevier, vol. 101(C).
    12. Ouassim Manout & Azise Oumar Diallo & Thibault Gloriot, 2023. "Implications of pricing and fleet size strategies on shared bikes and e-scooters: a case study from Lyon, France," Working Papers hal-04017908, HAL.
    13. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    14. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Gao, Kun & Yang, Ying & Li, Aoyong & Li, Junhong & Yu, Bo, 2021. "Quantifying economic benefits from free-floating bike-sharing systems: A trip-level inference approach and city-scale analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 89-103.
    16. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    17. Xavier Bach & Carme Miralles-Guasch & Oriol Marquet, 2023. "Spatial Inequalities in Access to Micromobility Services: An Analysis of Moped-Style Scooter Sharing Systems in Barcelona," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    18. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    19. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    20. Xinwei Ma & Ruiming Cao & Jianbiao Wang, 2019. "Effects of Psychological Factors on Modal Shift from Car to Dockless Bike Sharing: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 16(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:98:y:2022:i:c:s0966692321003240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.