IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p1089-d1438497.html
   My bibliography  Save this article

Evaluation of the Coupling Coordination and Sustainable Development of Water–Energy–Land–Food System on a 40-Year Scale: A Case Study of Hebei, China

Author

Listed:
  • Huanyu Chang

    (Academy of Eco-Civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin 300387, China
    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China)

  • Bing Zhang

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China)

  • Jingyan Han

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
    College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300384, China)

  • Yong Zhao

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China)

  • Yongqiang Cao

    (Academy of Eco-Civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin 300387, China)

  • Jiaqi Yao

    (Academy of Eco-Civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin 300387, China)

  • Linrui Shi

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China)

Abstract

Driven by economic expansion, urbanization, and population growth, the world is witnessing an escalating demand for water, energy, land, and food, posing substantial threats to the sustainable development of societies and economies. Given the intricate interdependencies inherent within the water–energy–land–food (WELF) system, it is imperative to conduct comprehensive assessments of the coupling coordination and sustainable development of the WELF system over long time scales and diverse characteristic dimensions. This study selects Hebei province, China, as the research region, constructing a comprehensive indicator system spanning from 1980 to 2020 using three dimensions: reliability (Rel), robustness (Rob), and equilibrium (Equ). The degree of coupling coordination (DCC) and sustainable development index (SDI) were developed using the comprehensive evaluation index and coupling coordination degree model. Additionally, the obstacle degree model and gray relational degree model were employed to assess the indicators that hinder or promote the SDI. The results indicate that: (1) The DCC (range of 0–1, bigger the better) of the WELF system increased from 0.65 to 0.75 between 1980 and 1998, then fluctuated between 0.75 and 0.69, stabilizing at a moderate level of coordinated development after 2015. (2) For the WELF system in Hebei, as Rel increased, Rob decreased, and Equ increased; similarly, as Rob increased, Equ also increased. (3) The SDI (range of 0–1, bigger the better) rose from 0.45 in 1980, initially increased, then decreased, and eventually stabilized. After 2014, it experienced rapid growth, reaching 0.54 by 2020, indicating an improvement in sustainable development capability. (4) Indicators related to the Equ dimension and the land subsystem were more critical limiting factors for SDI development, while indicators related to the Rel dimension and the food subsystem were more significant contributors to SDI development. These findings offer a scientific foundation and practical insights for Hebei and comparable regions, aiding in the resolution of resource conflicts, optimization of resource allocation, and enhancement of regional sustainable development.

Suggested Citation

  • Huanyu Chang & Bing Zhang & Jingyan Han & Yong Zhao & Yongqiang Cao & Jiaqi Yao & Linrui Shi, 2024. "Evaluation of the Coupling Coordination and Sustainable Development of Water–Energy–Land–Food System on a 40-Year Scale: A Case Study of Hebei, China," Land, MDPI, vol. 13(7), pages 1-21, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1089-:d:1438497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/1089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/1089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Xing & Zhang, Wen & Chen, Weiwei & Chen, Bin, 2020. "Land–water–energy nexus in agricultural management for greenhouse gas mitigation," Applied Energy, Elsevier, vol. 265(C).
    2. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    3. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    4. Aikaterini Roxani & Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies," Land, MDPI, vol. 12(5), pages 1-20, May.
    5. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    6. Wenzhe Luo & Yanling Jiang & Yuansheng Chen & Zhigang Yu, 2023. "Coupling Coordination and Spatial-Temporal Evolution of Water-Land-Food Nexus: A Case Study of Hebei Province at a County-Level," Land, MDPI, vol. 12(3), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Li & Ying Xiang & Xinyue Fan & Qinxiang Wang & Yang Wei, 2023. "Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    2. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    3. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    4. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
    5. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    6. Mohammad Zarei & Abdolsamad K. Amirkolaei & Jesse T. Trushenski & Wendy M. Sealey & Michael H. Schwarz & Reza Ovissipour, 2022. "Sorghum as a Potential Valuable Aquafeed Ingredient: Nutritional Quality and Digestibility," Agriculture, MDPI, vol. 12(5), pages 1-17, May.
    7. Athanasios Zisos & Dimitrios Chatzopoulos & Andreas Efstratiadis, 2024. "The Concept of Spatial Reliability Across Renewable Energy Systems—An Application to Decentralized Solar PV Energy," Energies, MDPI, vol. 17(23), pages 1-18, November.
    8. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    9. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    10. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    11. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    12. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    13. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    14. Zigao He, 2023. "The Water–Energy–Carbon Coupling Coordination Level in China," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    15. Shaosheng Jin & Bashiru Mansaray & Xin Jin & Haoyang Li, 2020. "Farmers’ preferences for attributes of rice varieties in Sierra Leone," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(5), pages 1185-1197, October.
    16. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    17. Kristin B. Raub & Kristine F. Stepenuck & Bindu Panikkar & Jennie C. Stephens, 2021. "An Analysis of Resilience Planning at the Nexus of Food, Energy, Water, and Transportation in Coastal US Cities," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    18. Felipe Vásquez & Gibran Vita & Daniel B. Müller, 2018. "Food Security for an Aging and Heavier Population," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    19. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    20. Baffes,John & Kabundi,Alain Ntumba & Nagle,Peter Stephen Oliver & Ohnsorge,Franziska Lieselotte, 2018. "The role of major emerging markets in global commodity demand," Policy Research Working Paper Series 8495, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1089-:d:1438497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.