IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i2p232-d1338014.html
   My bibliography  Save this article

Estimating Stream Bank and Bed Erosion and Deposition with Innovative and Traditional Methods

Author

Listed:
  • Paschalis Koutalakis

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

  • Georgios Gkiatas

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

  • Michael Xinogalos

    (Astrolabe Engineering, Miaouli 26, 14671 Néa Erithraía, Attiki, Greece)

  • Valasia Iakovoglou

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

  • Iordanis Kasapidis

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

  • Georgios Pagonis

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

  • Anastasia Savvopoulou

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

  • Konstantinos Krikopoulos

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

  • Theodoros Klepousniotis

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

  • George N. Zaimes

    (Geomorphology, Edaphology and Riparian Areas Lab (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus, 1st km Dramas-Mikrohoriou, 66100 Drama, Greece)

Abstract

Understanding the contributions of stream bank and bed erosion will allow us to implement the most effective management practices. The objective of this study was to assess different methods to measure bank and bed erosion at different scales, specifically the watershed, reach and plot. Innovative and traditional methods were utilized. At the watershed scale, indices based on free satellite images were used. For the reach scale, indices were used, but the images with higher accuracy were purchased and captured by unmanned aerial vehicles (UAVs). At the plot scale, erosion pins, cross-sections and laser scanning were applied. The watershed scale analysis showcased “hot spots”. These “hot spots” were reaches vulnerable to erosion and deposition. The indices of the purchased images were applied to these “hot spots” and allowed us to narrow the length of the reaches where UAV flights took place. These flight images located where erosion and deposition occurred. Finally, at the plot scale, laser scanning provided more detailed and accurate data at a greater scale compared to the traditional methods. The implementation of these methods allows us to find the areas vulnerable to erosion and deposition. These are the areas where nature-based solutions should be implemented to effectively mitigate erosion problems.

Suggested Citation

  • Paschalis Koutalakis & Georgios Gkiatas & Michael Xinogalos & Valasia Iakovoglou & Iordanis Kasapidis & Georgios Pagonis & Anastasia Savvopoulou & Konstantinos Krikopoulos & Theodoros Klepousniotis & , 2024. "Estimating Stream Bank and Bed Erosion and Deposition with Innovative and Traditional Methods," Land, MDPI, vol. 13(2), pages 1-29, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:232-:d:1338014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/2/232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/2/232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raphael Knevels & Alexander Brenning & Simone Gingrich & Gerhard Heiss & Theresia Lechner & Philip Leopold & Christoph Plutzar & Herwig Proske & Helene Petschko, 2021. "Towards the Use of Land Use Legacies in Landslide Modeling: Current Challenges and Future Perspectives in an Austrian Case Study," Land, MDPI, vol. 10(9), pages 1-29, September.
    2. David Pimentel, 2006. "Soil Erosion: A Food and Environmental Threat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(1), pages 119-137, February.
    3. Álvaro Gómez-Gutiérrez & Christian Conoscenti & Silvia Angileri & Edoardo Rotigliano & Susanne Schnabel, 2015. "Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-314, November.
    4. Shen, Z.Y. & Gong, Y.W. & Li, Y.H. & Hong, Q. & Xu, L. & Liu, R.M., 2009. "A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 96(10), pages 1435-1442, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamuna Giambastiani & Riccardo Giusti & Lorenzo Gardin & Stefano Cecchi & Maurizio Iannuccilli & Stefano Romanelli & Lorenzo Bottai & Alberto Ortolani & Bernardo Gozzini, 2022. "Assessing Soil Erosion by Monitoring Hilly Lakes Silting," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    2. Semih Ediş & Özgür Burhan Timur & Gamze Tuttu & İbrahim Aytaş & Ceyhun Göl & Ali Uğur Özcan, 2023. "Assessing the Impact of Engineering Measures and Vegetation Restoration on Soil Erosion: A Case Study in Osmancık, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
    3. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    4. Andrea Koch & Alex McBratney & Mark Adams & Damien Field & Robert Hill & John Crawford & Budiman Minasny & Rattan Lal & Lynette Abbott & Anthony O'Donnell & Denis Angers & Jeffrey Baldock & Edward Bar, 2013. "Soil Security: Solving the Global Soil Crisis," Global Policy, London School of Economics and Political Science, vol. 4(4), pages 434-441, November.
    5. Aznarul Islam & Sanat Kumar Guchhait, 2017. "Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: a case study of West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 433-459, April.
    6. Bruno Gianmarco Carra & Giuseppe Bombino & Manuel Esteban Lucas-Borja & Pietro Denisi & Pedro Antonio Plaza-Álvarez & Demetrio Antonio Zema, 2021. "Modelling the Event-Based Hydrological Response of Mediterranean Forests to Prescribed Fire and Soil Mulching with Fern Using the Curve Number, Horton and USLE-Family (Universal Soil Loss Equation) Mo," Land, MDPI, vol. 10(11), pages 1-31, October.
    7. Guoping Zhang & Mwanjalolo J.G. Majaliwa & Jian Xie, 2020. "Leveraging the Landscape," World Bank Publications - Reports 33911, The World Bank Group.
    8. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    9. Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Josef HOLEC & Zdeněk KVÍZ & Luděk PROCHÁZKA, 2017. "Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(2), pages 106-116.
    10. López-Vicente, M. & Navas, A. & Gaspar, L. & Machín, J., 2013. "Advanced modelling of runoff and soil redistribution for agricultural systems: The SERT model," Agricultural Water Management, Elsevier, vol. 125(C), pages 1-12.
    11. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    12. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    13. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    14. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    15. Habtamu Tilahun Kassahun & Bo Jellesmark Thorsen & Joffre Swait & Jette Bredahl Jacobsen, 2020. "Social Cooperation in the Context of Integrated Private and Common Land Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 105-136, January.
    16. Anna Vatsanidou & Spyros Fountas & Vasileios Liakos & George Nanos & Nikolaos Katsoulas & Theofanis Gemtos, 2020. "Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    17. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    18. Sacchi, Laura Valeria & Powell, Priscila Ana & Gasparri, Nestor Ignacio & Grau, Ricardo, 2017. "Air quality loss in urban centers of the Argentinean Dry Chaco: Wind and dust control as two scientifically neglected ecosystem services," Ecosystem Services, Elsevier, vol. 24(C), pages 234-240.
    19. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    20. Manuel Matisic & Marko Reljic & Ivan Dugan & Paulo Pereira & Vilim Filipovic & Lana Filipovic & Vedran Krevh & Igor Bogunovic, 2023. "Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut ( Corylus avellana L.) in Croatia," Sustainability, MDPI, vol. 15(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:232-:d:1338014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.