IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1166-d669337.html
   My bibliography  Save this article

Modelling the Event-Based Hydrological Response of Mediterranean Forests to Prescribed Fire and Soil Mulching with Fern Using the Curve Number, Horton and USLE-Family (Universal Soil Loss Equation) Models

Author

Listed:
  • Bruno Gianmarco Carra

    (AGRARIA Department, Mediterranean University of Reggio Calabria, Località Feo di Vito, I-89122 Reggio Calabria, Italy)

  • Giuseppe Bombino

    (AGRARIA Department, Mediterranean University of Reggio Calabria, Località Feo di Vito, I-89122 Reggio Calabria, Italy)

  • Manuel Esteban Lucas-Borja

    (Department of Agroforestry Technology, Science and Genetics, School of Advanced Agricultural and Forestry Engineering, Campus Universitario s/n, Castilla La Mancha University, E-02071 Albacete, Spain)

  • Pietro Denisi

    (AGRARIA Department, Mediterranean University of Reggio Calabria, Località Feo di Vito, I-89122 Reggio Calabria, Italy)

  • Pedro Antonio Plaza-Álvarez

    (Department of Agroforestry Technology, Science and Genetics, School of Advanced Agricultural and Forestry Engineering, Campus Universitario s/n, Castilla La Mancha University, E-02071 Albacete, Spain)

  • Demetrio Antonio Zema

    (AGRARIA Department, Mediterranean University of Reggio Calabria, Località Feo di Vito, I-89122 Reggio Calabria, Italy)

Abstract

The SCS-CN, Horton, and USLE-family models are widely used to predict and control runoff and erosion in forest ecosystems. However, in the literature there is no evidence of their use in Mediterranean forests subjected to prescribed fire and soil mulching. To fill this gap, this study evaluates the prediction capability for runoff and soil loss of the SCS-CN, Horton, MUSLE, and USLE-M models in three forests (pine, chestnut, and oak) in Southern Italy. The investigation was carried out at plot and event scales throughout one year, after a prescribed fire and post-fire soil mulching with fern. The SCS-CN and USLE-M models were accurate in predicting runoff volume and soil loss, respectively. In contrast, poor predictions of the modelled hydrological variables were provided by the models in unburned plots, and by the Horton and MUSLE models for all soil conditions. This inaccuracy may have been due to the fact that the runoff and erosion generation mechanisms were saturation-excess and rainsplash, while the Horton and MUSLE models better simulate infiltration-excess and overland flow processes, respectively. For the SCS-CN and USLE-M models, calibration was needed to obtain accurate predictions of surface runoff and soil loss; furthermore, different CNs and C factors must be input throughout the year to simulate the variability of the hydrological response of soil after fire. After calibration, two sets of CNs and C-factor values were suggested for applications of the SCS-CN and USLE-M models, after prescribed fire and fern mulching in Mediterranean forests. Once validated in a wider range of environmental contexts, these models may support land managers in controlling the hydrology of Mediterranean forests that are prone to wildfire risks.

Suggested Citation

  • Bruno Gianmarco Carra & Giuseppe Bombino & Manuel Esteban Lucas-Borja & Pietro Denisi & Pedro Antonio Plaza-Álvarez & Demetrio Antonio Zema, 2021. "Modelling the Event-Based Hydrological Response of Mediterranean Forests to Prescribed Fire and Soil Mulching with Fern Using the Curve Number, Horton and USLE-Family (Universal Soil Loss Equation) Mo," Land, MDPI, vol. 10(11), pages 1-31, October.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1166-:d:669337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juli Pausas & Santiago Fernández-Muñoz, 2012. "Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime," Climatic Change, Springer, vol. 110(1), pages 215-226, January.
    2. Shen, Z.Y. & Gong, Y.W. & Li, Y.H. & Hong, Q. & Xu, L. & Liu, R.M., 2009. "A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 96(10), pages 1435-1442, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    2. Ignasi Torre & Carlos Jaime-González & Mario Díaz, 2022. "Habitat Suitability for Small Mammals in Mediterranean Landscapes: How and Why Shrubs Matter," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
    3. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    4. Nives Grasso & Andrea Maria Lingua & Maria Angela Musci & Francesca Noardo & Marco Piras, 2018. "An INSPIRE-compliant open-source GIS for fire-fighting management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 623-637, January.
    5. Paschalis Koutalakis & Georgios Gkiatas & Michael Xinogalos & Valasia Iakovoglou & Iordanis Kasapidis & Georgios Pagonis & Anastasia Savvopoulou & Konstantinos Krikopoulos & Theodoros Klepousniotis & , 2024. "Estimating Stream Bank and Bed Erosion and Deposition with Innovative and Traditional Methods," Land, MDPI, vol. 13(2), pages 1-29, February.
    6. Marull, Joan & Cattaneo, Claudio & Gingrich, Simone & de Molina, Manuel González & Guzmán, Gloria I. & Watson, Andrew & MacFadyen, Joshua & Pons, Manel & Tello, Enric, 2019. "Comparative Energy-Landscape Integrated Analysis (ELIA) of past and present agroecosystems in North America and Europe from the 1830s to the 2010s," Agricultural Systems, Elsevier, vol. 175(C), pages 46-57.
    7. Marcos Rodrigues & Adrián Jiménez & Juan de la Riva, 2016. "Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2049-2070, December.
    8. Thibaut Fréjaville & Thomas Curt, 2015. "Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin)," Climatic Change, Springer, vol. 129(1), pages 239-251, March.
    9. Bruno A. Aparício & João A. Santos & Teresa R. Freitas & Ana C. L. Sá & José M. C. Pereira & Paulo M. Fernandes, 2022. "Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain)," Climatic Change, Springer, vol. 173(1), pages 1-20, July.
    10. Yan Yang & Guoqiang Wang & Lijing Wang & Jingshan Yu & Zongxue Xu, 2014. "Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-15, November.
    11. Michele Salis & Liliana Del Giudice & Roghayeh Jahdi & Fermin Alcasena-Urdiroz & Carla Scarpa & Grazia Pellizzaro & Valentina Bacciu & Matilde Schirru & Andrea Ventura & Marcello Casula & Fabrizio Ped, 2022. "Spatial Patterns and Intensity of Land Abandonment Drive Wildfire Hazard and Likelihood in Mediterranean Agropastoral Areas," Land, MDPI, vol. 11(11), pages 1-22, October.
    12. Taboada, Angela & García-Llamas, Paula & Fernández-Guisuraga, José Manuel & Calvo, Leonor, 2021. "Wildfires impact on ecosystem service delivery in fire-prone maritime pine-dominated forests," Ecosystem Services, Elsevier, vol. 50(C).
    13. Rodríguez Fernández-Blanco, Carmen & Górriz-Mifsud, Elena & Prokofieva, Irina & Muys, Bart & Parra, Constanza, 2022. "Blazing the trail: Social innovation supporting wildfire-resilient territories in Catalonia (Spain)," Forest Policy and Economics, Elsevier, vol. 138(C).
    14. Rafaello Bergonse & Sandra Oliveira & Ana Gonçalves & Sílvia Nunes & Carlos Câmara & José Luis Zêzere, 2021. "A combined structural and seasonal approach to assess wildfire susceptibility and hazard in summertime," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2545-2573, April.
    15. Thomas Curt & Thibaut Frejaville, 2018. "Wildfire Policy in Mediterranean France: How Far is it Efficient and Sustainable?," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 472-488, March.
    16. Delgado-Artés, Rafael & Garófano-Gómez, Virginia & Oliver-Villanueva, José-Vicente & Rojas-Briales, Eduardo, 2022. "Land use/cover change analysis in the Mediterranean region: a regional case study of forest evolution in Castelló (Spain) over 50 years," Land Use Policy, Elsevier, vol. 114(C).
    17. Burton, Kati & Becker, Douglas & Hovardas, Tasos & Wardropper, Chloe B. & Maas, Alexander, 2024. "Assessing policy preferences for preventing and managing wildfire in Greece," Forest Policy and Economics, Elsevier, vol. 163(C).
    18. Bérangère Leys & Christopher Carcaillet, 2016. "Subalpine fires: the roles of vegetation, climate and, ultimately, land uses," Climatic Change, Springer, vol. 135(3), pages 683-697, April.
    19. Tan, Q. & Huang, G.H. & Cai, Y.P., 2011. "Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty," Agricultural Water Management, Elsevier, vol. 98(10), pages 1595-1606, August.
    20. Aretano, Roberta & Semeraro, Teodoro & Petrosillo, Irene & De Marco, Antonella & Pasimeni, Maria Rita & Zurlini, Giovanni, 2015. "Mapping ecological vulnerability to fire for effective conservation management of natural protected areas," Ecological Modelling, Elsevier, vol. 295(C), pages 163-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1166-:d:669337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.