IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p12001-d1210671.html
   My bibliography  Save this article

Assessing the Impact of Engineering Measures and Vegetation Restoration on Soil Erosion: A Case Study in Osmancık, Türkiye

Author

Listed:
  • Semih Ediş

    (Department of Forest Engineering, Faculty of Forestry, University of Cankiri Karatekin, Çankırı 18200, Türkiye)

  • Özgür Burhan Timur

    (Department of Landscape Architecture, Faculty of Forestry, University of Cankiri Karatekin, Çankırı 18200, Türkiye)

  • Gamze Tuttu

    (Department of Forest Engineering, Faculty of Forestry, University of Cankiri Karatekin, Çankırı 18200, Türkiye)

  • İbrahim Aytaş

    (Department of Landscape Architecture, Faculty of Forestry, University of Cankiri Karatekin, Çankırı 18200, Türkiye)

  • Ceyhun Göl

    (Department of Forest Engineering, Faculty of Forestry, University of Cankiri Karatekin, Çankırı 18200, Türkiye)

  • Ali Uğur Özcan

    (Department of Landscape Architecture, Faculty of Forestry, University of Cankiri Karatekin, Çankırı 18200, Türkiye)

Abstract

The prioritization of preventing soil loss in Türkiye’s watersheds has become a pressing concern for planners. Numerous mathematical models are presently utilized on a global scale for soil erosion prediction. One such model is the Revised Universal Soil Loss Equation (RUSLE), commonly used to estimate average soil loss. Recently, there has been an increased emphasis on utilizing USLE/RUSLE in conjunction with Geographic Information System (GIS) technology, enabling grid-based analysis for predicting soil erosion and facilitating control measures. This study evaluates the effectiveness of erosion and flood control initiatives started in the 1970s within the Emine Creek watershed and its tributary rivers in Osmancık, Türkiye, utilizing RUSLE/GIS technologies. Two distinct maps illustrating the potential erosion risks were produced for two distinct temporal intervals, and a comparative analysis was conducted to evaluate the alterations that transpired. The implementation of various measures such as terracing, afforestation, and rehabilitation in the watershed led to a notable prediction of decreasing soil loss in the watershed. From 1970 to 2020, the rate of estimated soil loss was reduced from 417 to 256 metric tons per hectare per year, demonstrating the effectiveness of soil conservation measures in a semi-arid and weakly vegetated area at reducing potential soil loss.

Suggested Citation

  • Semih Ediş & Özgür Burhan Timur & Gamze Tuttu & İbrahim Aytaş & Ceyhun Göl & Ali Uğur Özcan, 2023. "Assessing the Impact of Engineering Measures and Vegetation Restoration on Soil Erosion: A Case Study in Osmancık, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12001-:d:1210671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/12001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/12001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Michalopoulou & Nikolaos Depountis & Konstantinos Nikolakopoulos & Vasileios Boumpoulis, 2022. "The Significance of Digital Elevation Models in the Calculation of LS Factor and Soil Erosion," Land, MDPI, vol. 11(9), pages 1-36, September.
    2. David Pimentel, 2006. "Soil Erosion: A Food and Environmental Threat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(1), pages 119-137, February.
    3. Walter Chen & Kieu Anh Nguyen, 2022. "The New Island-Wide LS Factors of Taiwan, with Comparison with EU Nations," Sustainability, MDPI, vol. 14(5), pages 1-11, March.
    4. Yanyan Li & Jinbing Zhang & Hui Zhu & Zhimin Zhou & Shan Jiang & Shuangyan He & Ying Zhang & Yicheng Huang & Mengfan Li & Guangrui Xing & Guanghui Li, 2023. "Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    5. Xiaobing Liu & Hao Li & Shengmin Zhang & Richard M. Cruse & Xingyi Zhang, 2019. "Gully Erosion Control Practices in Northeast China: A Review," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    6. Christoffel den Biggelaar & Rattan Lal & Hari Eswaran & Vincent E. Breneman & Paul F. Reich, 2003. "Crop Yield Losses to Soil Erosion at Regional and Global Scales: Evidence from Plot-Level and GIS Data," Chapters, in: Keith Wiebe (ed.), Land Quality, Agricultural Productivity, and Food Security, chapter 12, pages 262-279, Edward Elgar Publishing.
    7. Xuerou Weng & Boen Zhang & Jinxin Zhu & Dagang Wang & Jianxiu Qiu, 2023. "Assessing Land Use and Climate Change Impacts on Soil Erosion Caused by Water in China," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    8. Nuaman Ejaz & Mohamed Elhag & Jarbou Bahrawi & Lifu Zhang & Hamza Farooq Gabriel & Khalil Ur Rahman, 2023. "Soil Erosion Modelling and Accumulation Using RUSLE and Remote Sensing Techniques: Case Study Wadi Baysh, Kingdom of Saudi Arabia," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    9. Samuel Ferreira Pontes & Yuri Jacques Agra Bezerra da Silva & Vanessa Martins & Cácio Luiz Boechat & Ademir Sérgio Ferreira Araújo & Jussara Silva Dantas & Ozeas S. Costa & Ronny Sobreira Barbosa, 2022. "Prediction of Soil Erodibility by Diffuse Reflectance Spectroscopy in a Neotropical Dry Forest Biome," Land, MDPI, vol. 11(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Matisic & Marko Reljic & Ivan Dugan & Paulo Pereira & Vilim Filipovic & Lana Filipovic & Vedran Krevh & Igor Bogunovic, 2023. "Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut ( Corylus avellana L.) in Croatia," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    2. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    3. Andrea Koch & Alex McBratney & Mark Adams & Damien Field & Robert Hill & John Crawford & Budiman Minasny & Rattan Lal & Lynette Abbott & Anthony O'Donnell & Denis Angers & Jeffrey Baldock & Edward Bar, 2013. "Soil Security: Solving the Global Soil Crisis," Global Policy, London School of Economics and Political Science, vol. 4(4), pages 434-441, November.
    4. Aznarul Islam & Sanat Kumar Guchhait, 2017. "Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: a case study of West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 433-459, April.
    5. Guoping Zhang & Mwanjalolo J.G. Majaliwa & Jian Xie, 2020. "Leveraging the Landscape," World Bank Publications - Reports 33911, The World Bank Group.
    6. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    7. Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Josef HOLEC & Zdeněk KVÍZ & Luděk PROCHÁZKA, 2017. "Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(2), pages 106-116.
    8. López-Vicente, M. & Navas, A. & Gaspar, L. & Machín, J., 2013. "Advanced modelling of runoff and soil redistribution for agricultural systems: The SERT model," Agricultural Water Management, Elsevier, vol. 125(C), pages 1-12.
    9. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    10. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    11. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    12. Melese Baye Hailu & S. K. Mishra & Sanjay K. Jain, 2024. "Sediment yield modelling and prioritization of erosion-prone sub-basins in the Tekeze watershed, Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19855-19870, August.
    13. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    14. Habtamu Tilahun Kassahun & Bo Jellesmark Thorsen & Joffre Swait & Jette Bredahl Jacobsen, 2020. "Social Cooperation in the Context of Integrated Private and Common Land Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 105-136, January.
    15. Anna Vatsanidou & Spyros Fountas & Vasileios Liakos & George Nanos & Nikolaos Katsoulas & Theofanis Gemtos, 2020. "Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    16. Sacchi, Laura Valeria & Powell, Priscila Ana & Gasparri, Nestor Ignacio & Grau, Ricardo, 2017. "Air quality loss in urban centers of the Argentinean Dry Chaco: Wind and dust control as two scientifically neglected ecosystem services," Ecosystem Services, Elsevier, vol. 24(C), pages 234-240.
    17. Jinxi Su & Rong Tang & Huilong Lin, 2024. "Simulation and Spatio-Temporal Analysis of Soil Erosion in the Source Region of the Yellow River Using Machine Learning Method," Land, MDPI, vol. 13(9), pages 1-20, September.
    18. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    19. Katherine del Carmen Camacho-Zorogastúa & Julio Cesar Minga & Jhon Walter Gómez-Lora & Víctor Hugo Gallo-Ramos & Victor Garcés Díaz, 2023. "Evaluation of Soil Loss and Sediment Yield Based on GIS and Remote Sensing Techniques in a Complex Amazon Mountain Basin of Peru: Case Study Mayo River Basin, San Martin Region," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    20. Leonid Gokhberg & Ilya Kuzminov & Pavel Bakhtin & Elena Tochilina & Alexander Chulok & Anton Timofeev & Alina Lavrinenko, 2017. "Big-Data-Augmented Approach to Emerging Technologies Identification: Case of Agriculture and Food Sector," HSE Working papers WP BRP 76/STI/2017, National Research University Higher School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12001-:d:1210671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.