IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i9p954-d631627.html
   My bibliography  Save this article

Towards the Use of Land Use Legacies in Landslide Modeling: Current Challenges and Future Perspectives in an Austrian Case Study

Author

Listed:
  • Raphael Knevels

    (Department of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany)

  • Alexander Brenning

    (Department of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany)

  • Simone Gingrich

    (Department of Economics and Social Sciences, University of Natural Resources and Life Sciences, 1070 Vienna, Austria)

  • Gerhard Heiss

    (Center for Low-Emission Transport, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria)

  • Theresia Lechner

    (Department of Economics and Social Sciences, University of Natural Resources and Life Sciences, 1070 Vienna, Austria)

  • Philip Leopold

    (Center for Low-Emission Transport, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria)

  • Christoph Plutzar

    (Department of Economics and Social Sciences, University of Natural Resources and Life Sciences, 1070 Vienna, Austria
    Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna, Rennweg 14, 1030 Vienna, Austria)

  • Herwig Proske

    (Remote Sensing and Geoinformation Department, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria)

  • Helene Petschko

    (Department of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany)

Abstract

Land use/land cover (LULC) changes may alter the risk of landslide occurrence. While LULC has often been considered as a static factor representing present-day LULC, historical LULC dynamics have recently begun to attract more attention. The study objective was to assess the effect of LULC legacies of nearly 200 years on landslide susceptibility models in two Austrian municipalities (Waidhofen an der Ybbs and Paldau). We mapped three cuts of LULC patterns from historical cartographic documents in addition to remote-sensing products. Agricultural archival sources were explored to provide also a predictor on cumulative biomass extraction as an indicator of historical land use intensity. We use historical landslide inventories derived from high-resolution digital terrain models (HRDTM) generated using airborne light detection and ranging (LiDAR), which are reported to have a biased landslide distribution on present-day forested areas and agricultural land. We asked (i) if long-term LULC legacies are important and reliable predictors and (ii) if possible inventory biases may be mitigated by LULC legacies. For the assessment of the LULC legacy effect on landslide occurrences, we used generalized additive models (GAM) within a suitable modeling framework considering various settings of LULC as predictor, and evaluated the effect with well-established diagnostic tools. For both municipalities, we identified a high density of landslides on present-day forested areas, confirming the reported drawbacks. With the use of LULC legacy as an additional predictor, it was not only possible to account for this bias, but also to improve model performances.

Suggested Citation

  • Raphael Knevels & Alexander Brenning & Simone Gingrich & Gerhard Heiss & Theresia Lechner & Philip Leopold & Christoph Plutzar & Herwig Proske & Helene Petschko, 2021. "Towards the Use of Land Use Legacies in Landslide Modeling: Current Challenges and Future Perspectives in an Austrian Case Study," Land, MDPI, vol. 10(9), pages 1-29, September.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:954-:d:631627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/9/954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/9/954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krausmann, Fridolin & Gingrich, Simone & Haberl, Helmut & Erb, Karl-Heinz & Musel, Annabella & Kastner, Thomas & Kohlheb, Norbert & Niedertscheider, Maria & Schwarzlmüller, Elmar, 2012. "Long-term trajectories of the human appropriation of net primary production: Lessons from six national case studies," Ecological Economics, Elsevier, vol. 77(C), pages 129-138.
    2. Mayer, Andreas & Haas, Willi & Wiedenhofer, Dominik, 2017. "How Countries' Resource Use History Matters for Human Well-being – An Investigation of Global Patterns in Cumulative Material Flows from 1950 to 2010," Ecological Economics, Elsevier, vol. 134(C), pages 1-10.
    3. Hothorn, Torsten & Hornik, Kurt & van de Wiel, Mark A. & Zeileis, Achim, 2006. "A Lego System for Conditional Inference," The American Statistician, American Statistical Association, vol. 60, pages 257-263, August.
    4. Erb, Karl-Heinz & Haberl, Helmut & Jepsen, Martin Rudbeck & Kuemmerle, Tobias & Lindner, Marcus & Müller, Daniel & Verburg, Peter H & Reenberg, Anette, 2013. "A conceptual framework for analysing and measuring land-use intensity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(5), pages 464-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evelina Volpe & Stefano Luigi Gariano & Francesca Ardizzone & Federica Fiorucci & Diana Salciarini, 2022. "A Heuristic Method to Evaluate the Effect of Soil Tillage on Slope Stability: A Pilot Case in Central Italy," Land, MDPI, vol. 11(6), pages 1-15, June.
    2. Paschalis Koutalakis & Georgios Gkiatas & Michael Xinogalos & Valasia Iakovoglou & Iordanis Kasapidis & Georgios Pagonis & Anastasia Savvopoulou & Konstantinos Krikopoulos & Theodoros Klepousniotis & , 2024. "Estimating Stream Bank and Bed Erosion and Deposition with Innovative and Traditional Methods," Land, MDPI, vol. 13(2), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fetzel, Tamara & Gradwohl, Markus & Erb, Karl-Heinz, 2014. "Conversion, intensification, and abandonment: A human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005," Ecological Economics, Elsevier, vol. 97(C), pages 201-208.
    2. Lucie Kupková & Ivan Bičík & Leoš Jeleček, 2021. "At the Crossroads of European Landscape Changes: Major Processes of Landscape Change in Czechia since the Middle of the 19th Century and Their Driving Forces," Land, MDPI, vol. 10(1), pages 1-25, January.
    3. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    4. Tomáš Želinský, 2015. "Nekonzistentnosť časových preferencií ľudí z arginalizovaných rómskych komunít [On inconsistency of time preferences of people from the marginalised roma communities]," Politická ekonomie, Prague University of Economics and Business, vol. 2015(2), pages 204-222.
    5. Pritchard, Rose & Ryan, Casey M. & Grundy, Isla & van der Horst, Dan, 2018. "Human Appropriation of Net Primary Productivity and Rural Livelihoods: Findings From Six Villages in Zimbabwe," Ecological Economics, Elsevier, vol. 146(C), pages 115-124.
    6. repec:jss:jstsof:36:i02 is not listed on IDEAS
    7. Georgina Milne & Andrew William Byrne & Emma Campbell & Jordon Graham & John McGrath & Raymond Kirke & Wilma McMaster & Jesko Zimmermann & Adewale Henry Adenuga, 2022. "Quantifying Land Fragmentation in Northern Irish Cattle Enterprises," Land, MDPI, vol. 11(3), pages 1-16, March.
    8. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    9. Song, Min & Yi, Luping & Hu, Can, 2023. "Building up a compensation-oriented transferable development right mechanism: A theoretical and empirical exploration in Hubei, China," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    10. Dorothée Charlier & Florian Fizaine, 2020. "Does Becoming Richer Lead to a Reduction in Natural Resource Consumption? An Empirical Refutation of the Kuznets Material Curve," Working Papers 2020.05, FAERE - French Association of Environmental and Resource Economists.
    11. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    12. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    13. Ingrid Vigna & Angelo Besana & Elena Comino & Alessandro Pezzoli, 2021. "Application of the Socio-Ecological System Framework to Forest Fire Risk Management: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    14. Meier, Laura & Brauns, Mario & Grimm, Volker & Weitere, Markus & Frank, Karin, 2022. "MASTIFF: A mechanistic model for cross-scale analyses of the functioning of multiple stressed riverine ecosystems," Ecological Modelling, Elsevier, vol. 470(C).
    15. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    16. Seibold Heidi & Zeileis Achim & Hothorn Torsten, 2016. "Model-Based Recursive Partitioning for Subgroup Analyses," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 45-63, May.
    17. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The water footprint of the Spanish agricultural sector: 1860–2010," Ecological Economics, Elsevier, vol. 108(C), pages 200-207.
    18. Ke, Xinli & Chen, Jing & Zuo, Chengchao & Wang, Xiaoqian, 2024. "The cropland intensive utilisation transition in China: An induced factor substitution perspective," Land Use Policy, Elsevier, vol. 141(C).
    19. McGinlay, James & Parsons, David J. & Morris, Joe & Hubatova, Marie & Graves, Anil & Bradbury, Richard B. & Bullock, James M., 2017. "Do charismatic species groups generate more cultural ecosystem service benefits?," Ecosystem Services, Elsevier, vol. 27(PA), pages 15-24.
    20. Plank, Christina & Liehr, Stefan & Hummel, Diana & Wiedenhofer, Dominik & Haberl, Helmut & Görg, Christoph, 2021. "Doing more with less: Provisioning systems and the transformation of the stock-flow-service nexus," Ecological Economics, Elsevier, vol. 187(C).
    21. Whiting, Kai & Carmona, Luis Gabriel & Brand-Correa, Lina & Simpson, Edward, 2020. "Illumination as a material service: A comparison between Ancient Rome and early 19th century London," Ecological Economics, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:954-:d:631627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.