IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p432-d1594663.html
   My bibliography  Save this article

The Effects of Rainfall and Terracing–Mulch Combinations on Soil Erosion in a Loess Hilly Area, China: Insights from Plot Simulations and WEPP Modeling

Author

Listed:
  • Michael Aliyi Ame

    (State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wei Wei

    (State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shuming Zhang

    (State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wen Liu

    (Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Liding Chen

    (State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Soil erosion is a major environmental concern, especially in sensitive ecosystems like the Loess Plateau of China, where certain geological and climatic circumstances exacerbate the erosion process. Terracing and mulching are popular soil erosion management strategies in this region. However, their combined effects under varied rainfall intensities are poorly understood. The purpose of this study is to assess the performance of various terracing–mulch combinations in reducing water erosion under different rainfall intensities. The experimental layout included a control plot (C), non-terraced mulch applications (NTr-M), fish-scale pits with mulch (FSPs-M), zig terraces with mulch (ZTr-M), level bench terraces with mulch (LBTr-M), and trench terraces with mulch (TTr-M). Controlled artificial rainfall experiments were carried out under different intensities, and runoff and soil loss data were collected to evaluate the effects of the combinations. The event-based WEPP simulations, calibrated for the Loess Plateau, demonstrated strong predictive accuracy, as evidenced by the high correlation coefficients (R 2 = 0.97 for runoff; R 2 = 0.86 for soil loss) and Nash–Sutcliffe efficiency (NSE = 0.93 for runoff; NSE = 0.89 for soil loss), confirming their reliability in simulating erosion processes when compared to measured values. Our results revealed significant differences ( p < 0.05) in mean runoff and soil loss among the treatments, ranked in the order LBTr-M < TTr-M < ZTr-M < FSPs-M < NTr-M < C. Incremental response analysis also revealed that the control plot (C) was the most sensitive to changes in rainfall intensity, followed by FSPs-M and NTr-M. In contrast, LBTr-M was found to be the most stable strategy. These findings highlight the importance of optimizing micro-relief construction and mulch application to enhance erosion control and support the recommendation of LBTr-M, TTr-M, and ZTr-M as effective strategies. Conversely, FSPs-M and NTr-M proved less effective under higher rainfall intensities. These findings emphasize the need to optimize micro-relief construction and mulch application for erosion management, as well as suggest that such strategies could be applied to the Loess Plateau and other erosion-prone regions worldwide with similar climatic and topographic conditions.

Suggested Citation

  • Michael Aliyi Ame & Wei Wei & Shuming Zhang & Wen Liu & Liding Chen, 2025. "The Effects of Rainfall and Terracing–Mulch Combinations on Soil Erosion in a Loess Hilly Area, China: Insights from Plot Simulations and WEPP Modeling," Land, MDPI, vol. 14(2), pages 1-18, February.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:432-:d:1594663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel, 2006. "Soil Erosion: A Food and Environmental Threat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(1), pages 119-137, February.
    2. Luca Montanarella, 2015. "Agricultural policy: Govern our soils," Nature, Nature, vol. 528(7580), pages 32-33, December.
    3. Yixin Nong & Changbin Yin & Xiaoyan Yi & Jing Ren & Hsiaoping Chien, 2020. "Farmers’ Adoption Preferences for Sustainable Agriculture Practices in Northwest China," Sustainability, MDPI, vol. 12(15), pages 1-13, August.
    4. Yang Qiu & Xinping Wang & Zhongkui Xie & Yajun Wang, 2021. "Effects of gravel-sand mulch on the runoff, erosion, and nutrient losses in the Loess Plateau of north-western China under simulated rainfall," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(1), pages 22-28.
    5. Shen, Z.Y. & Gong, Y.W. & Li, Y.H. & Hong, Q. & Xu, L. & Liu, R.M., 2009. "A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 96(10), pages 1435-1442, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine del Carmen Camacho-Zorogastúa & Julio Cesar Minga & Jhon Walter Gómez-Lora & Víctor Hugo Gallo-Ramos & Victor Garcés Díaz, 2023. "Evaluation of Soil Loss and Sediment Yield Based on GIS and Remote Sensing Techniques in a Complex Amazon Mountain Basin of Peru: Case Study Mayo River Basin, San Martin Region," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    2. Paschalis Koutalakis & Georgios Gkiatas & Michael Xinogalos & Valasia Iakovoglou & Iordanis Kasapidis & Georgios Pagonis & Anastasia Savvopoulou & Konstantinos Krikopoulos & Theodoros Klepousniotis & , 2024. "Estimating Stream Bank and Bed Erosion and Deposition with Innovative and Traditional Methods," Land, MDPI, vol. 13(2), pages 1-29, February.
    3. Md Nawazuzzoha & Md. Mamoon Rashid & Prabuddh Kumar Mishra & Kamal Abdelrahman & Mohammed S. Fnais & Hasan Raja Naqvi, 2024. "Empirical Modeling of Soil Loss and Yield Utilizing RUSLE and SYI: A Geospatial Study in South Sikkim, Teesta Basin," Land, MDPI, vol. 13(10), pages 1-17, October.
    4. Yamuna Giambastiani & Riccardo Giusti & Lorenzo Gardin & Stefano Cecchi & Maurizio Iannuccilli & Stefano Romanelli & Lorenzo Bottai & Alberto Ortolani & Bernardo Gozzini, 2022. "Assessing Soil Erosion by Monitoring Hilly Lakes Silting," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    5. Semih Ediş & Özgür Burhan Timur & Gamze Tuttu & İbrahim Aytaş & Ceyhun Göl & Ali Uğur Özcan, 2023. "Assessing the Impact of Engineering Measures and Vegetation Restoration on Soil Erosion: A Case Study in Osmancık, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
    6. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    7. Andrea Koch & Alex McBratney & Mark Adams & Damien Field & Robert Hill & John Crawford & Budiman Minasny & Rattan Lal & Lynette Abbott & Anthony O'Donnell & Denis Angers & Jeffrey Baldock & Edward Bar, 2013. "Soil Security: Solving the Global Soil Crisis," Global Policy, London School of Economics and Political Science, vol. 4(4), pages 434-441, November.
    8. Aznarul Islam & Sanat Kumar Guchhait, 2017. "Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: a case study of West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 433-459, April.
    9. Bruno Gianmarco Carra & Giuseppe Bombino & Manuel Esteban Lucas-Borja & Pietro Denisi & Pedro Antonio Plaza-Álvarez & Demetrio Antonio Zema, 2021. "Modelling the Event-Based Hydrological Response of Mediterranean Forests to Prescribed Fire and Soil Mulching with Fern Using the Curve Number, Horton and USLE-Family (Universal Soil Loss Equation) Mo," Land, MDPI, vol. 10(11), pages 1-31, October.
    10. Guoping Zhang & Mwanjalolo J.G. Majaliwa & Jian Xie, 2020. "Leveraging the Landscape," World Bank Publications - Reports 33911, The World Bank Group.
    11. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    12. Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Josef HOLEC & Zdeněk KVÍZ & Luděk PROCHÁZKA, 2017. "Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(2), pages 106-116.
    13. López-Vicente, M. & Navas, A. & Gaspar, L. & Machín, J., 2013. "Advanced modelling of runoff and soil redistribution for agricultural systems: The SERT model," Agricultural Water Management, Elsevier, vol. 125(C), pages 1-12.
    14. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    15. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    16. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    17. Melese Baye Hailu & S. K. Mishra & Sanjay K. Jain, 2024. "Sediment yield modelling and prioritization of erosion-prone sub-basins in the Tekeze watershed, Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19855-19870, August.
    18. Irma Yeny & Raden Garsetiasih & Sri Suharti & Hendra Gunawan & Reny Sawitri & Endang Karlina & Budi Hadi Narendra & Surati & Sulistya Ekawati & Deden Djaenudin & Dony Rachmanadi & Nur Muhammad Heriyan, 2022. "Examining the Socio-Economic and Natural Resource Risks of Food Estate Development on Peatlands: A Strategy for Economic Recovery and Natural Resource Sustainability," Sustainability, MDPI, vol. 14(7), pages 1-29, March.
    19. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    20. Habtamu Tilahun Kassahun & Bo Jellesmark Thorsen & Joffre Swait & Jette Bredahl Jacobsen, 2020. "Social Cooperation in the Context of Integrated Private and Common Land Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 105-136, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:432-:d:1594663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.