IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2038-d1531893.html
   My bibliography  Save this article

Estimating Rainfall Erosivity in North Korea Using Automated Machine Learning: Insights into Regional Soil Erosion Risks

Author

Listed:
  • Jeongho Han

    (Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon-si 24341, Republic of Korea)

  • Seoro Lee

    (Department of Regional Infrastructure Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea)

Abstract

Soil erosion due to rainfall is a critical environmental issue in North Korea, exacerbated by deforestation and climate change. This study aims to estimate rainfall erosivity (RE) in North Korea using automated machine learning (AutoML), with a particular focus on regional soil erosion risks. North Korean data were sourced from the European Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis 5 dataset, while South Korean data were obtained from the Korea Meteorological Administration. Data from 50 stations in South Korea (2013–2019) and 27 stations in North Korea (1980–2020) were used. The GradientBoostingRegressor (GBR) model, optimized using the Tree-based Pipeline Optimization Tool (TPOT), was trained on South Korean data. The model’s performance was evaluated using metrics such as the root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R 2 ), achieving high predictive accuracy across eight stations in South Korea. Using the optimized model, RE in North Korea was estimated, and the spatial distribution of RE was analyzed using the Kriging interpolation. Results reveal significant regional variability, with the southern and western areas displaying the highest erosivity. These findings provide valuable insights into soil erosion management and the development of sustainable agricultural and environmental strategies in North Korea.

Suggested Citation

  • Jeongho Han & Seoro Lee, 2024. "Estimating Rainfall Erosivity in North Korea Using Automated Machine Learning: Insights into Regional Soil Erosion Risks," Land, MDPI, vol. 13(12), pages 1-14, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2038-:d:1531893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Ji-Long & Liu, Hong-Bin & Wu, Wei & Xie, De-Ti, 2011. "Estimation of monthly solar radiation from measured temperatures using support vector machines – A case study," Renewable Energy, Elsevier, vol. 36(1), pages 413-420.
    2. Abdulaziz Alqahtani & Muhammad Izhar Shah & Ali Aldrees & Muhammad Faisal Javed, 2022. "Comparative Assessment of Individual and Ensemble Machine Learning Models for Efficient Analysis of River Water Quality," Sustainability, MDPI, vol. 14(3), pages 1-19, January.
    3. Kieu Anh Nguyen & Walter Chen & Bor-Shiun Lin & Uma Seeboonruang, 2020. "Using Machine Learning-Based Algorithms to Analyze Erosion Rates of a Watershed in Northern Taiwan," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    2. Maen Takruri & Maissa Farhat & Oscar Barambones & José Antonio Ramos-Hernanz & Mohammed Jawdat Turkieh & Mohammed Badawi & Hanin AlZoubi & Maswood Abdus Sakur, 2020. "Maximum Power Point Tracking of PV System Based on Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, February.
    3. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    4. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    5. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Jinxi Su & Rong Tang & Huilong Lin, 2024. "Simulation and Spatio-Temporal Analysis of Soil Erosion in the Source Region of the Yellow River Using Machine Learning Method," Land, MDPI, vol. 13(9), pages 1-20, September.
    7. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    8. Ramedani, Zeynab & Omid, Mahmoud & Keyhani, Alireza & Shamshirband, Shahaboddin & Khoshnevisan, Benyamin, 2014. "Potential of radial basis function based support vector regression for global solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1005-1011.
    9. Yao, Wanxiang & Zhang, Chunxiao & Hao, Haodong & Wang, Xiao & Li, Xianli, 2018. "A support vector machine approach to estimate global solar radiation with the influence of fog and haze," Renewable Energy, Elsevier, vol. 128(PA), pages 155-162.
    10. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    11. Zeng, Jianwu & Qiao, Wei, 2013. "Short-term solar power prediction using a support vector machine," Renewable Energy, Elsevier, vol. 52(C), pages 118-127.
    12. Zou, Ling & Wang, Lunche & Xia, Li & Lin, Aiwen & Hu, Bo & Zhu, Hongji, 2017. "Prediction and comparison of solar radiation using improved empirical models and Adaptive Neuro-Fuzzy Inference Systems," Renewable Energy, Elsevier, vol. 106(C), pages 343-353.
    13. Long, Huan & Zhang, Zijun & Su, Yan, 2014. "Analysis of daily solar power prediction with data-driven approaches," Applied Energy, Elsevier, vol. 126(C), pages 29-37.
    14. Adolfo Crespo Márquez & Antonio de la Fuente Carmona & Sara Antomarioni, 2019. "A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency," Energies, MDPI, vol. 12(18), pages 1-25, September.
    15. Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Antonanzas, J. & Perpiñán-Lamigueiro, O. & Polo, J., 2014. "Towards downscaling of aerosol gridded dataset for improving solar resource assessment, an application to Spain," Renewable Energy, Elsevier, vol. 71(C), pages 534-544.
    16. Hasna Hissou & Said Benkirane & Azidine Guezzaz & Mourade Azrour & Abderrahim Beni-Hssane, 2023. "A Novel Machine Learning Approach for Solar Radiation Estimation," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    17. Salcedo-Sanz, Sancho & Deo, Ravinesh C. & Cornejo-Bueno, Laura & Camacho-Gómez, Carlos & Ghimire, Sujan, 2018. "An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia," Applied Energy, Elsevier, vol. 209(C), pages 79-94.
    18. Wang, Guochang & Su, Yan & Shu, Lianjie, 2016. "One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models," Renewable Energy, Elsevier, vol. 96(PA), pages 469-478.
    19. Jiaojiao Feng & Weizhen Wang & Jing Li, 2018. "An LM-BP Neural Network Approach to Estimate Monthly-Mean Daily Global Solar Radiation Using MODIS Atmospheric Products," Energies, MDPI, vol. 11(12), pages 1-14, December.
    20. Ieva Meidute-Kavaliauskiene & Milad Alizadeh Jabehdar & Vida Davidavičienė & Mohammad Ali Ghorbani & Saad Sh. Sammen, 2021. "A Simple Way to Increase the Prediction Accuracy of Hydrological Processes Using an Artificial Intelligence Model," Sustainability, MDPI, vol. 13(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2038-:d:1531893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.