IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p495-d1070912.html
   My bibliography  Save this article

Extraction of Urban Built-Up Areas Using Nighttime Light (NTL) and Multi-Source Data: A Case Study in Dalian City, China

Author

Listed:
  • Xueming Li

    (School of Geography, Liaoning Normal University, Dalian 116029, China
    Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China)

  • Yishan Song

    (School of Geography, Liaoning Normal University, Dalian 116029, China
    Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China)

  • He Liu

    (School of Geography, Liaoning Normal University, Dalian 116029, China
    Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China)

  • Xinyu Hou

    (School of Geography, Liaoning Normal University, Dalian 116029, China
    Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China)

Abstract

The rapid urban development associated with China’s reform and opening up has been the source of many urban problems. To understand these issues, it is necessary to have a deep understanding of the distribution of urban spatial structure. Taking the six districts of Dalian as an example, in this study, we integrated the enhanced vegetation index, points of interest, and surface temperature data into night light data. Furthermore, herein, we analyze the kernel density of the points of interest and construct three indices using image geometric mean: a human settlement index (HSI), a HSI-POI (HP) index, and a HSI-POI-LST (HPL) index. Using a support vector machine to identify the land type in Dalian’s built-up area, 1000 sampling points were created for verification. Then, the threshold boundary corresponding to the highest overall accuracy of each index and kappa coefficient was selected. The relevant conclusions are as follows: As compared with the other three types of data, the HPL index constructed in this study exhibited natural and social attributes, and the built-up area extracted using this method had the highest accuracy, a high image spatial resolution, and was able to overcome the omission issues observed when using one or two data sources. In addition, this method produces richer spatial details of the actual built-up area and provides more choices for assessing small-scale urban built-up areas in future research.

Suggested Citation

  • Xueming Li & Yishan Song & He Liu & Xinyu Hou, 2023. "Extraction of Urban Built-Up Areas Using Nighttime Light (NTL) and Multi-Source Data: A Case Study in Dalian City, China," Land, MDPI, vol. 12(2), pages 1-18, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:495-:d:1070912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min Xu & Chunyang He & Zhifeng Liu & Yinyin Dou, 2016. "How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    2. Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nimesh Akalanka & Nayomi Kankanamge & Jagath Munasinghe & Tan Yigitcanlar, 2024. "Urban Big Data Analytics: A Novel Approach for Tracking Urbanization Trends in Sri Lanka," Land, MDPI, vol. 13(6), pages 1-45, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inés Barbeito & Ricardo Cao & Stefan Sperlich, 2023. "Bandwidth selection for statistical matching and prediction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 418-446, March.
    2. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    3. Max Köhler & Anja Schindler & Stefan Sperlich, 2014. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
    4. Peiyuan Zhang & Jiaming Li & Wenzhong Zhang, 2022. "Characteristics of High-Technology Industry Migration within Metropolitan Areas—A Case Study of Beijing Metropolitan Area," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    5. M. Hiabu & E. Mammen & M. D. Martìnez-Miranda & J. P. Nielsen, 2016. "In-sample forecasting with local linear survival densities," Biometrika, Biometrika Trust, vol. 103(4), pages 843-859.
    6. Yicheng Tang & Xinyan Zhu & Wei Guo & Xinyue Ye & Tao Hu & Yaxin Fan & Faming Zhang, 2017. "Non-Homogeneous Diffusion of Residential Crime in Urban China," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    7. Xuan Liu & Zehao Li & Xinyi Fu & Zhengtong Yin & Mingzhe Liu & Lirong Yin & Wenfeng Zheng, 2023. "Monitoring House Vacancy Dynamics in The Pearl River Delta Region: A Method Based on NPP-VIIRS Night-Time Light Remote Sensing Images," Land, MDPI, vol. 12(4), pages 1-21, April.
    8. D.P. Amali Dassanayake & Igor Volobouev & A. Alexandre Trindade, 2017. "Local orthogonal polynomial expansion for density estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 806-830, October.
    9. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    10. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.
    11. Bao Meng & Xuxi Wang & Zhifeng Zhang & Pei Huang, 2022. "Spatio-Temporal Pattern and Driving Force Evolution of Cultivated Land Occupied by Urban Expansion in the Chengdu Metropolitan Area," Land, MDPI, vol. 11(9), pages 1-17, September.
    12. Sagi, Alon & Gal, Avigdor & Broitman, Dani & Czamanski, Daniel, 2024. "An unsupervised machine learning approach to the spatial analysis of urban systems through neighbourhoods’ dynamics," Land Use Policy, Elsevier, vol. 144(C).
    13. El Heda, Khadijetou & Louani, Djamal, 2018. "Optimal bandwidth selection in kernel density estimation for continuous time dependent processes," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 9-19.
    14. Stefan Sperlich, 2022. "Comments on: hybrid semiparametric Bayesian networks," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 335-339, June.
    15. Tingting Cheng & Jiti Gao & Xibin Zhang, 2019. "Nonparametric localized bandwidth selection for Kernel density estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 733-762, August.
    16. Inmaculada Picon-Cabrera & Jesus Maria Garcia-Gago & Luis Javier Sanchez-Aparicio & Pablo Rodriguez-Gonzalvez & Diego Gonzalez-Aguilera, 2020. "On the Use of Historical Flights for the Urban Growth Analysis of Cities Through Time: The Case Study of Avila (Spain)," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    17. Yu Liu & Chen Zeng & Huatai Cui & Yanhua Song, 2018. "Sustainable Land Urbanization and Ecological Carrying Capacity: A Spatially Explicit Perspective," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    18. Xiang Li & Jiang Zhu & Tao Liu & Xiangdong Yin & Jiangchun Yao & Hao Jiang & Bing Bu & Jianlong Yan & Yixuan Li & Zhangcheng Chen, 2023. "Quota and Space Allocations of New Urban Land Supported by Urban Growth Simulations: A Case Study of Guangzhou City, China," Land, MDPI, vol. 12(6), pages 1-21, June.
    19. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Yong Jiang & Chris Zevenbergen & Dafang Fu, 2017. "Understanding the challenges for the governance of China’s “sponge cities” initiative to sustainably manage urban stormwater and flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 521-529, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:495-:d:1070912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.