IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027452.html
   My bibliography  Save this article

Modeling the spatiotemporal dynamics of electric power consumption in China from 2000 to 2020 based on multisource remote sensing data and machine learning

Author

Listed:
  • Lu, Wenlu
  • Zhang, Da
  • He, Chunyang
  • Zhang, Xiwen

Abstract

China's rising electricity power consumption (EPC) is strongly correlated with carbon emissions. Timely and accurate analysis of the spatiotemporal dynamics of EPC is important to the realization of carbon peaking and carbon neutrality goals in China. However, due to data quality problems and limitations of modeling methods, the estimation accuracy warrants further improvement. In this study, the EPC in China from 2000 to 2020 was estimated based on multisource remote sensing data using the Random Forest (RF) model. Compared with previous studies, the accuracy of this study was improved by 39%–47%. The reasons were combining multisource remote sensing data can mitigate the quality issues of nighttime light (NTL) data, and the RF can capture the nonlinear relations between remote sensing data and EPC. In addition, the spatial pattern of the average EPC in China was dominated by the low-level EPC, as well as showing an obvious increasing trend. We also found that in the middle reaches of the Yellow River and northern coastal China, the low-speed increase in EPC led to high carbon emissions and emission intensity. We suggest optimizing the fuel fix of energy and adjusting the industrial structure, combining them with scientific and rational spatial planning.

Suggested Citation

  • Lu, Wenlu & Zhang, Da & He, Chunyang & Zhang, Xiwen, 2024. "Modeling the spatiotemporal dynamics of electric power consumption in China from 2000 to 2020 based on multisource remote sensing data and machine learning," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027452
    DOI: 10.1016/j.energy.2024.132971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.