IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v134y2016i4d10.1007_s10584-015-1551-7.html
   My bibliography  Save this article

Vascular plant changes in extreme environments: effects of multiple drivers

Author

Listed:
  • Nicoletta Cannone

    (Insubria University)

  • M. Guglielmin

    (Insubria University)

  • P. Convey

    (Natural Environment Research Council)

  • M. R. Worland

    (Natural Environment Research Council)

  • S. E. Favero Longo

    (Università degli Studi di Torino)

Abstract

The Antarctic Peninsula is one of three regions of the planet that have experienced the highest rates of climate warming over recent decades. Based on a comprehensive large-scale resurvey, allowing comparison of new (2009) and historical data (1960s), we show that the two native Antarctic vascular plant species have exhibited significant increases in number of occupied sites and percent cover since the 1960s: Deschampsia antarctica increasing in coverage by 191 % and in number of sites by 104 %. Colobanthus quitensis increasing in coverage by 208 % and number of sites by 35 %. These changes likely occurred in response to increases of 1.2 °C in summer air temperature over the same time period. Both species exhibited changes with elevation due to the interaction of multiple drivers (climatic factors and animal disturbance), producing heterogeneity of responses across an elevation gradient. Below an elevation of 20 m fur seal activity exerted negative impacts. Between 20 and 60 m, both plant species underwent considerable increases in the number of sites and percent cover, likely influenced by both climate warming and nutrient input from seals. Above an elevation threshold of 60 m the maximum elevation of the sites occupied decreased for both species, perhaps as a consequence of physical disturbance at higher elevations due to the permafrost conditions and/or the snow cover thickness and persistence. Understanding the role of disturbance drivers for vegetation change in cold regions may become a research priority to enable improved forecasting of biological responses and feedbacks of climate warming on ecosystems in these globally influential regions.

Suggested Citation

  • Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
  • Handle: RePEc:spr:climat:v:134:y:2016:i:4:d:10.1007_s10584-015-1551-7
    DOI: 10.1007/s10584-015-1551-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-015-1551-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-015-1551-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maggini, Ramona & Lehmann, Anthony & Kéry, Marc & Schmid, Hans & Beniston, Martin & Jenni, Lukas & Zbinden, Niklaus, 2011. "Are Swiss birds tracking climate change?," Ecological Modelling, Elsevier, vol. 222(1), pages 21-32.
    2. Michelle C. Mack & Edward A. G. Schuur & M. Syndonia Bret-Harte & Gaius R. Shaver & F. Stuart Chapin, 2004. "Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization," Nature, Nature, vol. 431(7007), pages 440-443, September.
    3. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicoletta Cannone & M. Guglielmin & P. Convey & M. Worland & S. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    2. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    3. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    4. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    5. Chan, Nathan & Wichman, Casey, 2017. "The Effects of Climate on Leisure Demand: Evidence from North America," RFF Working Paper Series 17-20, Resources for the Future.
    6. Richter, Andries & Grasman, Johan, 2013. "The transmission of sustainable harvesting norms when agents are conditionally cooperative," Ecological Economics, Elsevier, vol. 93(C), pages 202-209.
    7. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    8. Andrew J Allyn & Michael A Alexander & Bradley S Franklin & Felix Massiot-Granier & Andrew J Pershing & James D Scott & Katherine E Mills, 2020. "Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-28, April.
    9. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    10. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    11. Fei, Teng & Skidmore, Andrew K. & Venus, Valentijn & Wang, Tiejun & Toxopeus, Bert & Bian, Meng & Liu, Yaolin, 2012. "Predicting micro thermal habitat of lizards in a dynamic thermal environment," Ecological Modelling, Elsevier, vol. 231(C), pages 126-133.
    12. Ralf C Buckley & J Guy Castley & Fernanda de Vasconcellos Pegas & Alexa C Mossaz & Rochelle Steven, 2012. "A Population Accounting Approach to Assess Tourism Contributions to Conservation of IUCN-Redlisted Mammal Species," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    13. Aagaard, Kevin J. & Thogmartin, Wayne E. & Lonsdorf, Eric V., 2018. "Temperature-influenced energetics model for migrating waterfowl," Ecological Modelling, Elsevier, vol. 378(C), pages 46-58.
    14. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    15. Hu, Saiquan & Jia, Xiao & Zhang, Xiaojin & Zheng, Xiaoying & Zhu, Junming, 2017. "How political ideology affects climate perception: Moderation effects of time orientation and knowledge," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 124-131.
    16. Sajid Khan & Zishan Ahmad Wani & Rameez Ahmad & Kailash S. Gaira & Susheel Verma, 2024. "Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20355-20377, August.
    17. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    18. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    19. Lazarus Chapungu & Luxon Nhamo & Roberto Cazzolla Gatti & Munyaradzi Chitakira, 2020. "Quantifying Changes in Plant Species Diversity in a Savanna Ecosystem Through Observed and Remotely Sensed Data," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    20. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:134:y:2016:i:4:d:10.1007_s10584-015-1551-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.