IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1096-d207361.html
   My bibliography  Save this article

An Assessment Framework for Grassland Ecosystem Health with Consideration of Natural Succession: A Case Study in Bayinxile, China

Author

Listed:
  • Nitu Wu

    (Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
    Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Aijun Liu

    (Grassland Investigation and Planning Institute of Inner Mongolia, Hohhot 010051, China)

  • Yongfang Wang

    (Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China)

  • Lanhua Li

    (Grassland Investigation and Planning Institute of Inner Mongolia, Hohhot 010051, China)

  • Lumengqiqige Chao

    (Grassland Investigation and Planning Institute of Inner Mongolia, Hohhot 010051, China)

  • Guixiang Liu

    (Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China)

Abstract

Grassland health assessment is the basis for formulating grassland protection policy. However, there are few assessment methods that consider the angle of natural succession for northern China’s regional native grassland with excessive human activities. The main purpose of this study is to build an assessment system for these areas from the perspective of natural succession. Besides, the minimal cumulative resistance (MCR) model was used to extract potential ecological information from the study area as a supplementary reference for the assessment results. The result for Bayinxile pasture, a typical semiarid steppe with excessive human activities located in northern China, showed that: (1) The ecological function of eastern hilly area was better than that of other regions and the western area was lowest as a whole. (2) The river was the most important ecological network in the whole grassland in that it was of vital significance in the prevention of retrogressive succession and in the linking of ecological communities. (3) The density of ecological network was closely related to the intensity of human activities, and farmland and roads had great negative influence on the connection of the grassland ecological network. We further proposed an ecological control zone and made suggestions for Bayinxile ecological management to prevent grassland degradation based on the above results. This study should provide a new perspective for grassland health assessment and sustainable development of regional grassland.

Suggested Citation

  • Nitu Wu & Aijun Liu & Yongfang Wang & Lanhua Li & Lumengqiqige Chao & Guixiang Liu, 2019. "An Assessment Framework for Grassland Ecosystem Health with Consideration of Natural Succession: A Case Study in Bayinxile, China," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1096-:d:207361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1096/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Bi & Bianrong Chang & Fen Hou & Zihan Yang & Qi Fu & Bo Li, 2021. "Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang," IJERPH, MDPI, vol. 18(13), pages 1-23, July.
    2. Zhi Wang & Zhaoping Yang & Hui Shi & Fang Han & Qin Liu & Jianwei Qi & Yayan Lu, 2020. "Ecosystem Health Assessment of World Natural Heritage Sites Based on Remote Sensing and Field Sampling Verification: Bayanbulak as Case Study," Sustainability, MDPI, vol. 12(7), pages 1-21, March.
    3. Ziyang Wang & Peiji Shi & Xuebin Zhang & Huali Tong & Weiping Zhang & Yue Liu, 2021. "Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    4. Junnan Xiong & Wei Li & Hao Zhang & Weiming Cheng & Chongchong Ye & Yunliang Zhao, 2019. "Selected Environmental Assessment Model and Spatial Analysis Method to Explain Correlations in Environmental and Socio-Economic Data with Possible Application for Explaining the State of the Ecosystem," Sustainability, MDPI, vol. 11(17), pages 1-26, September.
    5. Tianqi Zhao & Feng Zhang & Rongzhen Suo & Chen Gu & Daling Chen & Tony Yang & Mengli Zhao, 2020. "Biennial Mowing Maintains the Biomass and Functional Diversity of Semi-Arid Grassland," Sustainability, MDPI, vol. 12(4), pages 1-11, February.
    6. Ning Zhang & Kangning Xiong & Hua Xiao & Juan Zhang & Chuhong Shen, 2023. "Ecological Environment Dynamic Monitoring and Driving Force Analysis of Karst World Heritage Sites Based on Remote-Sensing: A Case Study of Shibing Karst," Land, MDPI, vol. 12(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1096-:d:207361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.