IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p7111-d587645.html
   My bibliography  Save this article

Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang

Author

Listed:
  • Xu Bi

    (College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China
    Faculty of Geographical Science, School of Natural Resources, Beijing Normal University, Beijing 100875, China)

  • Bianrong Chang

    (College of Humanities, Tianjin Agricultural University, Tianjin 300384, China)

  • Fen Hou

    (College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China)

  • Zihan Yang

    (Faculty of Geographical Science, School of Natural Resources, Beijing Normal University, Beijing 100875, China)

  • Qi Fu

    (School of Politics and Public Administration, Soochow University, Suzhou 215123, China
    Collaborative Innovation Center for New Urbanization and Social Governance in Jiangsu Province, Soochow University, Suzhou 215123, China
    Center for Chinese Urbanization Studies of Soochow University, Suzhou 215123, China)

  • Bo Li

    (Faculty of Geographical Science, School of Natural Resources, Beijing Normal University, Beijing 100875, China)

Abstract

Grassland ecosystems are increasingly threatened by pressures from climate change and intensified human activity, especially in the arid region of Central Asia. A comprehensive understanding of the ecological environment changes is crucial for humans to implement environmental protection measures to adapt to climate change and alleviate the contradiction between humans and land. In this study, fractional vegetation coverage (FVC), leaf area index (LAI), gross primary productivity of vegetation (GPP), land surface temperature (LST), and wetness (WET) were retrieved from Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite remote sensing products in 2008 and 2018. Principal component analysis (PCA) was used to establish the MODIS data-based ecological index (MODEI) in the study area, and the spatial differentiation characteristics and driving mechanism of ecological quality in the last ten years were explored. The results showed that: (1) FVC, GPP, LAI, and WET had positive effects on the ecological environment, while LST had a negative impact on the ecological environment. FVC and GPP were more significant than other indicators. (2) The MODEI showed a spatial pattern of “excellent in the north and poor in the south” and changed from north to south in the study area. (3) From 2008 to 2018, the average MODEI of Fuyun County increased from 0.292 to 0.303, indicating that the ecological quality in Fuyun County became better overall. The improved areas were mainly located in the summer pastures at higher elevations. In comparison, the deteriorated areas were concentrated in the spring and autumn pastures and winter pastures at lower elevations. The areas where the ecological environment had obviously improved and degraded were distributed along the banks of the Irtysh River and the Ulungur River. (4) With the increase in precipitation and the decrease in grazing pressure, the MODEI of summer pasture was improved. The deterioration of ecological environment quality in spring and autumn pastures and winter pastures was related to the excessive grazing pressure. The more significant changes in the MODEI on both sides of the river were associated with implementing the herdsmen settlement project. On the one hand, the implementation of newly settled villages increased the area of construction land on both sides of the river, which led to the deterioration of ecological quality; on the other hand, due to the increase in cropland land and the planting of artificial grasses along the river, the ecological quality was improved. The study offers significant information for managers to make more targeted ecological restoration efforts in ecologically fragile areas.

Suggested Citation

  • Xu Bi & Bianrong Chang & Fen Hou & Zihan Yang & Qi Fu & Bo Li, 2021. "Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang," IJERPH, MDPI, vol. 18(13), pages 1-23, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:7111-:d:587645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/7111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/7111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaole Wen & Yanli Ming & Yonggang Gao & Xinyu Hu, 2019. "Dynamic Monitoring and Analysis of Ecological Quality of Pingtan Comprehensive Experimental Zone, a New Type of Sea Island City, Based on RSEI," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    2. Jianping Huang & Haipeng Yu & Aiguo Dai & Yun Wei & Litai Kang, 2017. "Drylands face potential threat under 2 °C global warming target," Nature Climate Change, Nature, vol. 7(6), pages 417-422, June.
    3. Xuhuan Dai & Zhilong Wu & Yao Fan & Bo Li & Zihan Yang & Bo Nan & Xu Bi, 2019. "Characteristics and Determinants of Livelihood Diversification of Different Household Types in Far Northwestern China," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    4. Nitu Wu & Aijun Liu & Yongfang Wang & Lanhua Li & Lumengqiqige Chao & Guixiang Liu, 2019. "An Assessment Framework for Grassland Ecosystem Health with Consideration of Natural Succession: A Case Study in Bayinxile, China," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    5. Congjian Sun & Xiaoming Li & Wenqiang Zhang & Xingong Li, 2020. "Evolution of Ecological Security in the Tableland Region of the Chinese Loess Plateau Using a Remote-Sensing-Based Index," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huayong Zhang & Jiayu Zheng & Hengchao Zou & Zhongyu Wang & Xiande Ji & Shijia Zhang & Zhao Liu, 2024. "Evaluating Spatiotemporal Patterns and Integrated Driving Forces of Habitat Quality in the Northern Sand-Prevention Belt of China," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
    2. Le Zhang & Qinyi Gu & Chen Li & Yi Huang, 2022. "Characteristics and Spatial–Temporal Differences of Urban “Production, Living and Ecological” Environmental Quality in China," IJERPH, MDPI, vol. 19(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Luo & Shengwei Zhang & Lei Huang & Zhiqiang Liu & Lin Yang & Ruishen Li & Xi Lin, 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    2. Shangxiao Wang & Ming Zhang & Xi Xi, 2022. "Ecological Environment Evaluation Based on Remote Sensing Ecological Index: A Case Study in East China over the Past 20 Years," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    3. Xueman Zuo & Jiazheng Li & Ludan Zhang & Zhilong Wu & Sen Lin & Xisheng Hu, 2023. "Spatio-Temporal Variations in Ecological Quality and Its Response to Topography and Road Network Based on GEE: Taking the Minjiang River Basin as a Case," Land, MDPI, vol. 12(9), pages 1-25, September.
    4. Fuyu Yang & Jingjing Xu & Xin Zhao & Xuekai Wang & Yi Xiong, 2022. "Assessment of the Grassland Ecological Compensation Policy (GECP) in Qinghai, China," Agriculture, MDPI, vol. 12(9), pages 1-16, September.
    5. Liu, Mengyu & Zhou, Xiong & Huang, Guohe & Li, Yongping, 2024. "The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically," LSE Research Online Documents on Economics 124431, London School of Economics and Political Science, LSE Library.
    6. Kaizheng Xiang & Anzhou Zhao & Haixin Liu & Xiangrui Zhang & Anbing Zhang & Xinle Tian & Zihan Jin, 2022. "Spatiotemporal Evolution and Coupling Pattern Analysis of Urbanization and Ecological Environmental Quality of the Chinese Loess Plateau," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    7. Binhua Zhao & Jianchun Han & Peng Li & Hongtao Li & Yangfan Feng & Bingze Hu & Guojun Zhang & Jie Li, 2023. "Evidence for Urbanization Effects on Eco-Environmental Quality: A Case Study of Guyuan City, China," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    8. Jianbo Zhou & Wanqing Liu, 2022. "Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index (RSEI) in Taihu Lake Basin, China," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    9. Tianqi Zhao & Feng Zhang & Rongzhen Suo & Chen Gu & Daling Chen & Tony Yang & Mengli Zhao, 2020. "Biennial Mowing Maintains the Biomass and Functional Diversity of Semi-Arid Grassland," Sustainability, MDPI, vol. 12(4), pages 1-11, February.
    10. Bangkim Biswas & Bishawjit Mallick, 2021. "Livelihood diversification as key to long-term non-migration: evidence from coastal Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8924-8948, June.
    11. Junnan Xiong & Wei Li & Hao Zhang & Weiming Cheng & Chongchong Ye & Yunliang Zhao, 2019. "Selected Environmental Assessment Model and Spatial Analysis Method to Explain Correlations in Environmental and Socio-Economic Data with Possible Application for Explaining the State of the Ecosystem," Sustainability, MDPI, vol. 11(17), pages 1-26, September.
    12. Ziyang Wang & Peiji Shi & Xuebin Zhang & Huali Tong & Weiping Zhang & Yue Liu, 2021. "Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    13. Xiaoxia Su & Jing Wu & Pengshuo Li & Renjie Li & Penggen Cheng, 2022. "RSEI-Based Modeling of Ecological Security and Its Spatial Impacts on Soil Quality: A Case Study of Dayu, China," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    14. Ning Zhang & Kangning Xiong & Hua Xiao & Juan Zhang & Chuhong Shen, 2023. "Ecological Environment Dynamic Monitoring and Driving Force Analysis of Karst World Heritage Sites Based on Remote-Sensing: A Case Study of Shibing Karst," Land, MDPI, vol. 12(1), pages 1-15, January.
    15. Zhang, Xuemin & Li, Pengyu & Shan, Tao & Liu, Qingqing & Li, Jinping & Huang, Tingting & Wu, Qingbai & Zhang, Peng, 2024. "Experimental study on the influence of particle size and grain grading on the CO2 hydrate formation and storage process in porous media," Energy, Elsevier, vol. 305(C).
    16. Zhi Wang & Zhaoping Yang & Hui Shi & Fang Han & Qin Liu & Jianwei Qi & Yayan Lu, 2020. "Ecosystem Health Assessment of World Natural Heritage Sites Based on Remote Sensing and Field Sampling Verification: Bayanbulak as Case Study," Sustainability, MDPI, vol. 12(7), pages 1-21, March.
    17. Adhikari, Lipy & Komarek, Adam M. & de Voil, Peter & Rodriguez, Daniel, 2023. "A framework for the assessment of farm diversification options in broadacre agriculture," Agricultural Systems, Elsevier, vol. 210(C).
    18. Zeke Lian & Huichao Hao & Jing Zhao & Kaizhong Cao & Hesong Wang & Zhechen He, 2022. "Evaluation of Remote Sensing Ecological Index Based on Soil and Water Conservation on the Effectiveness of Management of Abandoned Mine Landscaping Transformation," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    19. Qiang Liu & Feihong Yu & Xingmin Mu, 2022. "Evaluation of the Ecological Environment Quality of the Kuye River Source Basin Using the Remote Sensing Ecological Index," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    20. Chen, Zhixue & Wang, Guohui & Yang, Xianlong & Li, Zhenfeng & Shen, Yuying, 2023. "Water competition among the coexisting Platycladus orientalis, Prunus davidiana and Medicago sativa in a semi-arid agroforestry system," Agricultural Water Management, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:7111-:d:587645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.