IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v85y2019icp419-427.html
   My bibliography  Save this article

Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections

Author

Listed:
  • Wu, Ye
  • Tao, Yu
  • Yang, Guishan
  • Ou, Weixin
  • Pueppke, Steven
  • Sun, Xiao
  • Chen, Gongtai
  • Tao, Qin

Abstract

Formulation of suitable land use strategies for sustainable management of urban landscapes requires assessment of the potential impact of future urban expansion on ecosystem services. We assessed land use change in the rapidly urbanizing Kunshan City of China during 2006–2016 and projected future land uses in 2030 under three alternative scenarios: Business-As-Usual (BAU), Croplands Protection (CP), and Ecological Restoration (ER). Then we quantified the spatio-temporal variations of six ecosystem services (including crop production, carbon storage, habitat quality, flood regulation, and nitrogen and phosphorus retention) in response to urban land use change from 2006 to 2030 using the InVEST model. We also analyzed temporal variation of the tradeoffs and synergies among multiple ecosystem services throughout the period of study. Our estimates indicate that the urban land of Kunshan increased by 19% over the past decade and will continue to expand by 15% from 2016 to 2030 under the BAU scenario. As a result, crop production, carbon storage, habitat quality, and flood regulation capacity would all decrease tremendously. Crop production would remain stable under the CP scenario owing to the strict protection of croplands, but nitrogen and phosphorus loading would increase by 8%. In contrast, the ER scenario would decrease nutrient loading by over 35% with concomitant benefits to carbon storage, habitat quality, and flood regulation capacity. However, crop production would decrease dramatically under the ER scenario, primarily due to the transition of large areas of croplands to ecological zones. Although croplands were the major sources for nitrogen and phosphorus loading in Kunshan during the years 2006–2016, urban land would become the major source of pollution under all future scenarios. Crop production and habitat quality were not significantly correlated during the years 2006–2016, while they would be positively correlated under the BAU and CP scenarios. This implies that croplands would become increasingly important in providing habitats as urban land continues to expand by replacing ecological land from 2016 to 2030. We propose four major land use strategies, including compact urban growth, croplands protection, reforestation to build greenways, and wetlands restoration in the riparian areas of drinking water sources to improve ecosystem services in Kunshan.

Suggested Citation

  • Wu, Ye & Tao, Yu & Yang, Guishan & Ou, Weixin & Pueppke, Steven & Sun, Xiao & Chen, Gongtai & Tao, Qin, 2019. "Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: Past trajectories and future projections," Land Use Policy, Elsevier, vol. 85(C), pages 419-427.
  • Handle: RePEc:eee:lauspo:v:85:y:2019:i:c:p:419-427
    DOI: 10.1016/j.landusepol.2019.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837718317095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2019.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Mingyue & Peng, Jian & Liu, Yuanxin & Li, Tianyi & Wang, Yanglin, 2018. "Mapping Watershed-Level Ecosystem Service Bundles in the Pearl River Delta, China," Ecological Economics, Elsevier, vol. 152(C), pages 106-117.
    2. Wang, Yangyang & Atallah, Shady & Shao, Guofan, 2017. "Spatially explicit return on investment to private forest conservation for water purification in Indiana, USA," Ecosystem Services, Elsevier, vol. 26(PA), pages 45-57.
    3. Karen C Seto & Michail Fragkias & Burak Güneralp & Michael K Reilly, 2011. "A Meta-Analysis of Global Urban Land Expansion," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    4. Tao, Yu & Wang, Hongning & Ou, Weixin & Guo, Jie, 2018. "A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region," Land Use Policy, Elsevier, vol. 72(C), pages 250-258.
    5. Tao, Yu & Li, Feng & Liu, Xusheng & Zhao, Dan & Sun, Xiao & Xu, Lianfang, 2015. "Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 210-216.
    6. Lyu, Rongfang & Zhang, Jianming & Xu, Mengqun & Li, Jijun, 2018. "Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China," Land Use Policy, Elsevier, vol. 77(C), pages 163-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Liu & Libo Pan & Yue Qi & Xiao Guan & Junsheng Li, 2021. "Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services," Land, MDPI, vol. 10(10), pages 1-23, October.
    2. Shuting Bai & Jiuchun Yang & Yubo Zhang & Fengqin Yan & Lingxue Yu & Shuwen Zhang, 2022. "Evaluating Ecosystem Services and Trade-Offs Based on Land-Use Simulation: A Case Study in the Farming–Pastoral Ecotone of Northern China," Land, MDPI, vol. 11(7), pages 1-17, July.
    3. Yukun Cao & Xianqiao Huang & Xiangyue Liu & Bo Cao, 2023. "Spatio-Temporal Evolution Characteristics, Development Patterns, and Ecological Effects of “Production-Living-Ecological Space” at the City Level in China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    4. Abebe Mengaw Wubie & Walter T. de Vries & Berhanu Kefale Alemie, 2020. "A Socio-Spatial Analysis of Land Use Dynamics and Process of Land Intervention in the Peri-Urban Areas of Bahir Dar City," Land, MDPI, vol. 9(11), pages 1-27, November.
    5. Dikman Maheng & Assela Pathirana & Chris Zevenbergen, 2021. "A Preliminary Study on the Impact of Landscape Pattern Changes Due to Urbanization: Case Study of Jakarta, Indonesia," Land, MDPI, vol. 10(2), pages 1-26, February.
    6. Andrea Pronti, 2020. "The bottom-up approach is teetering. When sustainability does not match public participation: The case of an urban re-greening project in a small town in Northern Italy," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(1), pages 129-157.
    7. Lisu Chen & Qiong Wei & Qiang Fu & Daolun Feng, 2021. "Spatiotemporal Evolution Analysis of Habitat Quality under High-Speed Urbanization: A Case Study of Urban Core Area of China Lin-Gang Free Trade Zone (2002–2019)," Land, MDPI, vol. 10(2), pages 1-21, February.
    8. Lyu, Rongfang & Clarke, Keith C. & Zhang, Jianming & Feng, Junli & Jia, Xuehui & Li, Jijun, 2021. "Dynamics of spatial relationships among ecosystem services and their determinants: Implications for land use system reform in Northwestern China," Land Use Policy, Elsevier, vol. 102(C).
    9. Zhang, Guanshi & Zheng, Duo & Xie, Long & Zhang, Xiu & Wu, Hongjuan & Li, Sen, 2021. "Mapping changes in the value of ecosystem services in the Yangtze River Middle Reaches Megalopolis, China," Ecosystem Services, Elsevier, vol. 48(C).
    10. Yubo Wang & Xizhu Yang, 2022. "Fiscal Ecological Cost of Land in China: Estimation and Regional Differences," Land, MDPI, vol. 11(8), pages 1-25, August.
    11. Huaxiang Chen & Lina Tang & Quanyi Qiu & Baosheng Wang & Weixiang Hu, 2020. "Spatial Trade-Offs and Temporal Evolution of Multiple Ecosystem Services in a Marine-Terrestrial Urban-Agglomeration Zone," IJERPH, MDPI, vol. 17(4), pages 1-18, February.
    12. Linye Zhu & Mingming Shi & Deqin Fan & Kun Tu & Wenbin Sun, 2023. "Analysis of Changes in Vegetation Carbon Storage and Net Primary Productivity as Influenced by Land-Cover Change in Inner Mongolia, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    13. Zuzheng Li & Xiaoqin Cheng & Hairong Han, 2020. "Analyzing Land-Use Change Scenarios for Ecosystem Services and their Trade-Offs in the Ecological Conservation Area in Beijing, China," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    14. Mingxin Wen & Ting Zhang & Long Li & Longqian Chen & Sai Hu & Jia Wang & Weiqiang Liu & Yu Zhang & Lina Yuan, 2021. "Assessment of Land Ecological Security and Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018," Sustainability, MDPI, vol. 13(1), pages 1-28, January.
    15. Abera, Wuletawu & Tamene, Lulseged & Kassawmar, Tibebu & Mulatu, Kalkidan & Kassa, Habtemariam & Verchot, Louis & Quintero, Marcela, 2021. "Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia," Ecosystem Services, Elsevier, vol. 50(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaofeng Yuan & Congmou Zhu & Lixia Yang & Fenghua Xie, 2019. "Responses of Ecosystem Services to Urbanization-Induced Land Use Changes in Ecologically Sensitive Suburban Areas in Hangzhou, China," IJERPH, MDPI, vol. 16(7), pages 1-14, March.
    2. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    3. Chen, Wanxu & Chi, Guangqing & Li, Jiangfeng, 2020. "The spatial aspect of ecosystem services balance and its determinants," Land Use Policy, Elsevier, vol. 90(C).
    4. Yue Wang & Qi Fu & Tinghui Wang & Mengfan Gao & Jinhua Chen, 2022. "Multiscale Characteristics and Drivers of the Bundles of Ecosystem Service Budgets in the Su-Xi-Chang Region, China," IJERPH, MDPI, vol. 19(19), pages 1-26, October.
    5. Yanying Yang & Hua Zheng & Weihua Xu & Lu Zhang & Zhiyun Ouyang, 2019. "Temporal Changes in Multiple Ecosystem Services and Their Bundles Responding to Urbanization and Ecological Restoration in the Beijing–Tianjin–Hebei Metropolitan Area," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    6. Peng, Jian & Wang, Xiaoyu & Liu, Yanxu & Zhao, Yan & Xu, Zihan & Zhao, Mingyue & Qiu, Sijing & Wu, Jiansheng, 2020. "Urbanization impact on the supply-demand budget of ecosystem services: Decoupling analysis," Ecosystem Services, Elsevier, vol. 44(C).
    7. Wenbo Cai, 2022. "Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region," Land, MDPI, vol. 11(9), pages 1-15, September.
    8. Zhen Zhong & Xuening Fang & Yu Zhang & Xianfang Shu & Dan Guo, 2022. "Mapping Ecosystem Service Supply–Demand Bundles for an Integrated Analysis of Tradeoffs in an Urban Agglomeration of China," Land, MDPI, vol. 11(9), pages 1-18, September.
    9. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    10. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    11. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. González-García, Alberto & Palomo, Ignacio & González, José A. & López, César A. & Montes, Carlos, 2020. "Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning," Land Use Policy, Elsevier, vol. 94(C).
    13. Xiaolu Yan & Xinyuan Li & Chenghao Liu & Jiawei Li & Jingqiu Zhong, 2022. "Scales and Historical Evolution: Methods to Reveal the Relationships between Ecosystem Service Bundles and Socio-Ecological Drivers—A Case Study of Dalian City, China," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    14. Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Ke Huang & Martin Dallimer & Lindsay C. Stringer & Anlu Zhang & Ting Zhang, 2021. "Does Economic Agglomeration Lead to Efficient Rural to Urban Land Conversion? An Examination of China’s Metropolitan Area Development Strategy," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    16. Tao Lin & Yunjun Yu & Xuemei Bai & Ling Feng & Jin Wang, 2013. "Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    17. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    18. Kukkonen, Markus O. & Muhammad, Muhammad J. & Käyhkö, Niina & Luoto, Miska, 2018. "Urban expansion in Zanzibar City, Tanzania: Analyzing quantity, spatial patterns and effects of alternative planning approaches," Land Use Policy, Elsevier, vol. 71(C), pages 554-565.
    19. Hattam, Caroline & Broszeit, Stefanie & Langmead, Olivia & Praptiwi, Radisti A. & Ching Lim, Voon & Creencia, Lota A. & Duc Hau, Tran & Maharja, Carya & Wulandari, Prawesti & Mitra Setia, Tatang & Sug, 2021. "A matrix approach to tropical marine ecosystem service assessments in South east Asia," Ecosystem Services, Elsevier, vol. 51(C).
    20. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:85:y:2019:i:c:p:419-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.