IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2316-d1006033.html
   My bibliography  Save this article

Evaluating Ecosystem Services for the Expansion of Irrigation on Agricultural Land

Author

Listed:
  • Maurice G. Estes

    (Earth and Atmospheric Science Department, Earth System Science Center, 320 Sparkman Drive, Huntsville, AL 35805, USA)

  • James Cruise

    (Earth and Atmospheric Science Department, Earth System Science Center, 320 Sparkman Drive, Huntsville, AL 35805, USA)

  • Walter Lee Ellenburg

    (Earth and Atmospheric Science Department, Earth System Science Center, 320 Sparkman Drive, Huntsville, AL 35805, USA)

  • Rachel Suhs

    (Earth and Atmospheric Science Department, Earth System Science Center, 320 Sparkman Drive, Huntsville, AL 35805, USA)

  • Alexandria Cox

    (Earth and Atmospheric Science Department, Earth System Science Center, 320 Sparkman Drive, Huntsville, AL 35805, USA)

  • Max Runge

    (Agricultural Economics and Rural Sociology, 304 Comer Hall Auburn University, Auburn, AL 36849, USA)

  • Adam Newby

    (Agricultural Economics and Rural Sociology, 304 Comer Hall Auburn University, Auburn, AL 36849, USA)

Abstract

Managing water resources requires consideration of both environmental and socio-economic benefits to effectively balance the benefits and costs. This includes identifying ecosystem services (ES) of concern and how to evaluate the project or proposed changes effect on these ES. The purpose of this effort is to describe methods to evaluate ecosystem services to provide expanded irrigation to existing agricultural lands in Alabama and the potential application to other areas. A case study has been undertaken on the Middle Alabama watershed in central Alabama and methods have been developed and applied to evaluate ES in terms of how irrigated versus rainfed fields will affect sediment retention, fertilizer usage and the effect of the subsequent discharges of sediment and nitrogen from fertilizer on water quality. The results of case studies in the Middle Alabama watershed indicate positive ES benefits from sustainable agricultural practices and the irrigation of agricultural lands versus rainfed fields. We anticipate these methods will be applicable to other watersheds outside the southeast region too.

Suggested Citation

  • Maurice G. Estes & James Cruise & Walter Lee Ellenburg & Rachel Suhs & Alexandria Cox & Max Runge & Adam Newby, 2022. "Evaluating Ecosystem Services for the Expansion of Irrigation on Agricultural Land," Land, MDPI, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2316-:d:1006033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allaire-Leung, S. E. & Wu, L. & Mitchell, J. P. & Sanden, B. L., 2001. "Nitrate leaching and soil nitrate content as affected by irrigation uniformity in a carrot field," Agricultural Water Management, Elsevier, vol. 48(1), pages 37-50, May.
    2. Ribaudo, Marc & Savage, Jeffrey & Aillery, Marcel P., 2014. "An Economic Assessment of Policy Options To Reduce Agricultural Pollutants in the Chesapeake Bay," Economic Research Report 171880, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sneeringer, Stacy, 2016. "Comparing Participation in Nutrient Trading by Livestock Operations to Crop Producers in the Chesapeake Bay Watershed," Economic Research Report 249772, United States Department of Agriculture, Economic Research Service.
    2. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.
    3. Kurunc, A. & Ersahin, S. & Uz, B. Yetgin & Sonmez, N.K. & Uz, I. & Kaman, H. & Bacalan, G.E. & Emekli, Y., 2011. "Identification of nitrate leaching hot spots in a large area with contrasting soil texture and management," Agricultural Water Management, Elsevier, vol. 98(6), pages 1013-1019, April.
    4. Ghimire, Chandra Prasad & Bradley, Stuart & Ritchie, Willis & Appels, Willemijn M. & Grundy, Laura & Snow, Val, 2022. "Towards quantifying plot-scale overland flow connectivity using acoustic proximal remote sensing," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Liao, Kaihua & Lv, Ligang & Lai, Xiaoming & Zhu, Qing, 2021. "Toward a framework for the multimodel ensemble prediction of soil nitrogen losses," Ecological Modelling, Elsevier, vol. 456(C).
    6. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    7. Marshall, Elizabeth & Aillery, Marcel & Ribaudo, Marc & Key, Nigel & Sneeringer, Stacy & Hansen, LeRoy & Malcolm, Scott & Riddle, Anne, 2018. "Reducing Nutrient Losses From Cropland in the Mississippi/Atchafalaya River Basin: Cost Efficiency and Regional Distribution," Economic Research Report 277567, United States Department of Agriculture, Economic Research Service.
    8. Zhou, Lifeng & He, Jianqiang & Qi, Zhijuan & Dyck, Miles & Zou, Yufeng & Zhang, Tibin & Feng, Hao, 2018. "Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency," Agricultural Water Management, Elsevier, vol. 199(C), pages 190-200.
    9. Baram, S. & Couvreur, V. & Harter, T. & Read, M. & Brown, P.H. & Hopmans, J.W. & Smart, D.R., 2016. "Assessment of orchard N losses to groundwater with a vadose zone monitoring network," Agricultural Water Management, Elsevier, vol. 172(C), pages 83-95.
    10. Rees, Gwen & Stephenson, Kurt & Taylor, Daniel B., 2015. "The Impact of Transaction Costs and Differential BMP Adoption Rates on the Cost of Reducing Agricultural Nonpoint Source Pollution in Virginia," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196834, Southern Agricultural Economics Association.
    11. Sawadgo, Wendiam & Plastina, Alejandro, 2021. "Do cost-share programs increase cover crop use? Empirical evidence from Iowa," ISU General Staff Papers 202101010800001084, Iowa State University, Department of Economics.
    12. Timlin, Dennis & Chun, Jong Ahn & Meisinger, John & Kang, Kwangmin & Fleisher, David & Staver, Ken & Doherty, Craig & Russ, Andrew, 2019. "Evaluation of the agricultural policy environmental extender (APEX) for the Chesapeake Bay watershed," Agricultural Water Management, Elsevier, vol. 221(C), pages 477-485.
    13. Li, Jiusheng & Li, Bei & Rao, Minjie, 2005. "Spatial and temporal distributions of nitrogen and crop yield as affected by nonuniformity of sprinkler fertigation," Agricultural Water Management, Elsevier, vol. 76(3), pages 160-180, August.
    14. Robles, O. & Playán, E. & Cavero, J. & Zapata, N., 2017. "Assessing low-pressure solid-set sprinkler irrigation in maize," Agricultural Water Management, Elsevier, vol. 191(C), pages 37-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2316-:d:1006033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.