IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i11p2077-d976920.html
   My bibliography  Save this article

Investigating the Impacts of Urbanization on Vegetation Net Primary Productivity: A Case Study of Chengdu–Chongqing Urban Agglomeration from the Perspective of Townships

Author

Listed:
  • Jianshu Li

    (School of Architecture and Urban Planning, Nanjing University, Nanjing 210023, China)

  • Mo Bi

    (College of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, China)

  • Guoen Wei

    (College of Resources and Environment, Nanchang University, Nanchang 330031, China)

Abstract

As an emerging national strategic urban agglomeration in China, the changing trend of vegetation net primary productivity (NPP) and the impact of the urbanization level (UL) on carbon cycle functions in the Chengdu–Chongqing urban agglomeration (CUA) have received increasing attention. Previous studies have largely overlooked externalities and the heterogeneity of urbanization effects, and urbanization has also been analyzed in isolation (with focus being on land and population urbanization). In this study, the spatial evolution of NPP was evaluated from 2000 to 2020 at the township level (3859) using multivariate remote sensing data and a comprehensive index (UL) that included population urbanization, land urbanization, and economic urbanization. Bivariate spatial autocorrelation, spatial Durbin models, and geographically weighted regression models were used to analyze the spatial externalities of urbanization impacts and assess the global and local effects. The results show that the region’s mean NPP increased by 177.25 g*c/m 2 (annual growth of 1.59%), exhibiting a distribution of “low in the middle and high in the periphery” and low-value clustering along major traffic arteries and rivers. Low-value-NPP areas were mainly located in urban centers, while the high-level areas were in the mountainous region (in the southwest and southeast) and significantly expanded over time. Negative correlation clusters were the main clustering types between the UL and NPP; the “High-Low” negative correlation clusters accelerated outward from the urban centers of Chengdu and Chongqing. Overall, urbanization had negative direct and spillover effects on NPP, exhibiting spatial non-stationarity of the negative driving effect within the urban agglomeration. The results indicate the need to strengthen regional ecological joint governance and adopt more place-based urbanization optimization strategies. This study offers new insights to help to reduce the constraining effects of urbanization on vegetation productivity and ecological functions from the perspectives of population agglomeration, land expansion, and industrial construction.

Suggested Citation

  • Jianshu Li & Mo Bi & Guoen Wei, 2022. "Investigating the Impacts of Urbanization on Vegetation Net Primary Productivity: A Case Study of Chengdu–Chongqing Urban Agglomeration from the Perspective of Townships," Land, MDPI, vol. 11(11), pages 1-15, November.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:2077-:d:976920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/11/2077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/11/2077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiping Liu & Yuling Han, 2021. "Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    2. Sicheng Wang & Pingjun Sun & Feng Sun & Shengnan Jiang & Zhaomin Zhang & Guoen Wei, 2021. "The Direct and Spillover Effect of Multi-Dimensional Urbanization on PM 2.5 Concentrations: A Case Study from the Chengdu-Chongqing Urban Agglomeration in China," IJERPH, MDPI, vol. 18(20), pages 1-19, October.
    3. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    4. Chenchen Shi & Xiaoping Zhu & Haowei Wu & Zhihui Li, 2022. "Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration of China," Land, MDPI, vol. 11(6), pages 1-14, June.
    5. Xiaoxin Zhang & Martin Brandt & Xiaowei Tong & Philippe Ciais & Yuemin Yue & Xiangming Xiao & Wenmin Zhang & Kelin Wang & Rasmus Fensholt, 2022. "A large but transient carbon sink from urbanization and rural depopulation in China," Nature Sustainability, Nature, vol. 5(4), pages 321-328, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Chang & Pingjun Sun & Guoen Wei, 2022. "Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration," Land, MDPI, vol. 11(10), pages 1-19, October.
    2. Kai Cheng & Haitao Yang & Shengli Tao & Yanjun Su & Hongcan Guan & Yu Ren & Tianyu Hu & Wenkai Li & Guangcai Xu & Mengxi Chen & Xiancheng Lu & Zekun Yang & Yanhong Tang & Keping Ma & Jingyun Fang & Qi, 2024. "Carbon storage through China’s planted forest expansion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Chenchen Shi & Naliang Guo & Xiaoping Zhu & Feng Wu, 2022. "Assessing Urban Resilience from the Perspective of Scaling Law: Evidence from Chinese Cities," Land, MDPI, vol. 11(10), pages 1-23, October.
    4. Liang, Junyi & Wang, Shaojian & Liao, Yuantao & Feng, Kuishuang, 2024. "Carbon emissions embodied in investment: Assessing emissions reduction responsibility through multi-regional input-output analysis," Applied Energy, Elsevier, vol. 358(C).
    5. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    6. Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
    7. Xu, Aiting & Song, Miaoyuan & Wu, Yunguang & Luo, Yifan & Zhu, Yuhan & Qiu, Keyang, 2024. "Effects of new urbanization on China's carbon emissions: A quasi-natural experiment based on the improved PSM-DID model," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    8. Fan, Jingjing & Wang, Jianliang & Qiu, Jixiang & Li, Nu, 2023. "Stage effects of energy consumption and carbon emissions in the process of urbanization: Evidence from 30 provinces in China," Energy, Elsevier, vol. 276(C).
    9. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    10. Zhou, Yang & Wang, Heng & Qiu, Huanguang, 2023. "Population aging reduces carbon emissions: Evidence from China's latest three censuses," Applied Energy, Elsevier, vol. 351(C).
    11. Zuxuan Song & Fangmei Liu & Wenbo Lv & Jianwu Yan, 2023. "Classification of Urban Agricultural Functional Regions and Their Carbon Effects at the County Level in the Pearl River Delta, China," Agriculture, MDPI, vol. 13(9), pages 1-29, September.
    12. Changyuan He & Qiang Zhang & Gang Wang & Vijay P. Singh & Tiantian Li & Shuai Cui, 2023. "Evaluation of Urban Resilience of China’s Three Major Urban Agglomerations Using Complex Adaptive System Theory," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    13. Shengli Dai & Yingying Wang & Weimin Zhang, 2022. "The Impact Relationships between Scientific and Technological Innovation, Industrial Structure Advancement and Carbon Footprints in China Based on the PVAR Model," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    14. Weisong Li & Zhenwei Wang & Zhibin Mao & Jiaxing Cui, 2022. "Spatially Non-Stationary Response of Carbon Emissions to Urbanization in Han River Ecological Economic Belt, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    15. Ogutu B. Osoro & Edward J. Oughton & Andrew R. Wilson & Akhil Rao, 2023. "Sustainability assessment of Low Earth Orbit (LEO) satellite broadband megaconstellations," Papers 2309.02338, arXiv.org, revised Mar 2024.
    16. Xin Li & Xinyu Zhuang, 2022. "Eco-City Problems: Industry–City–Ecology, Urbanization Development Assessment in Resource-Exhausted Cities," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    17. Xuewei Zhang & Yi Zeng & Wanxu Chen & Sipei Pan & Fenglian Du & Gang Zong, 2024. "Spatio-Temporal Diversification of per Capita Carbon Emissions in China: 2000–2020," Land, MDPI, vol. 13(9), pages 1-24, September.
    18. Guangzhi Qi & Zhibao Wang & Zhixiu Wang & Lijie Wei, 2022. "Has Industrial Upgrading Improved Air Pollution?—Evidence from China’s Digital Economy," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    19. Shuai Zhang & Dajian Zhu & Lilian Li, 2023. "Urbanization, Human Inequality, and Material Consumption," IJERPH, MDPI, vol. 20(5), pages 1-18, March.
    20. Sicheng Wang & Feng Lu & Guoen Wei, 2022. "Direct and Spillover Effects of Urban Land Expansion on Habitat Quality in Chengdu-Chongqing Urban Agglomeration," Sustainability, MDPI, vol. 14(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:2077-:d:976920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.