IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7022-d579968.html
   My bibliography  Save this article

Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model

Author

Listed:
  • Yiping Liu

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Yuling Han

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    College of Management, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)

Abstract

In the Yangtze River Economic Belt (YREB), one of the most important challenges at present is to promote green, low-carbon development. This study attempted to explore the impact of different dimensions of urbanization and technology on CO 2 emissions at different stages in YREB by using an extended STIRPAT model on provincial panel data from 2000 to 2017. To examine the change differences based on the different effects of urbanization and technology on CO 2 emissions, we divided the total study period into two stages according to the change trends of CO 2 emissions and considered the YREB as a whole as well as the lower, middle, and upper reaches individually. The main findings are as follows. First, an inverted U relationship was found between economic urbanization and CO 2 emissions for the entire study period along with the period of a rapid rise in CO 2 emissions (Stage I) only in YREB and the upper reaches, while in the stable change period (Stage II), the inverted U relationship existed in the upper and lower reaches. An inverted U relationship between technology and CO 2 emissions was only found in the middle reaches for Stage I and in the middle and lower reaches for Stage II. Second, during the entire study period, economic urbanization had the greatest inhibitory effect on carbon dioxide emissions, followed by energy intensity and population urbanization; during Stage I, the main reduction factors were economic urbanization and energy intensity, and population urbanization had a non-significant impact. Third, per capita gross domestic product (GDP) and population size had a positive impact on CO 2 emission increases. Specifically, during Stage II, the fitting effect was not good (R 2 is 0.3948), and the whole formula was not significant. In lower reaches, the economic urbanization had a positive impact at Stage I, the energy intensity had a rebound effect and per capita GDP had a non-significant impact at Stage II.

Suggested Citation

  • Yiping Liu & Yuling Han, 2021. "Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7022-:d:579968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shaojian & Fang, Chuanglin & Wang, Yang, 2016. "Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 505-515.
    2. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    3. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    4. Xueting Jin & Yu Li & Dongqi Sun & Jinzhou Zhang & Ji Zheng, 2019. "Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    5. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    6. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    7. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    8. Ahmad, Najid & Du, Liangsheng & Lu, Jiye & Wang, Jianlin & Li, Hong-Zhou & Hashmi, Muhammad Zaffar, 2017. "Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve?," Energy, Elsevier, vol. 123(C), pages 164-172.
    9. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    10. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    11. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    12. Bo Li & Xuejing Liu & Zhenhong Li, 2015. "Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1667-1685, April.
    13. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    14. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianshu Li & Mo Bi & Guoen Wei, 2022. "Investigating the Impacts of Urbanization on Vegetation Net Primary Productivity: A Case Study of Chengdu–Chongqing Urban Agglomeration from the Perspective of Townships," Land, MDPI, vol. 11(11), pages 1-15, November.
    2. Jie Chang & Pingjun Sun & Guoen Wei, 2022. "Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration," Land, MDPI, vol. 11(10), pages 1-19, October.
    3. Ang Li & Xiaofan Li & Yi Li & Hui Wang & Hong Zhang, 2022. "The Impact of Urbanization on Carbon Emissions and Spatial–Temporal Differentiation Based on Meta-Analysis in China," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    4. Xiaomei Shen & Hong Zheng & Mingdong Jiang & Xinxin Yu & Heyichen Xu & Guanyu Zhong, 2022. "Multidimensional Impact of Urbanization Process on Regional Net CO 2 Emissions: Taking the Yangtze River Economic Belt as an Example," Land, MDPI, vol. 11(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    3. Khan, Yasir & Hassan, Taimoor & Guiqin, Huang & Nabi, Ghulam, 2023. "Analyzing the impact of natural resources and rule of law on sustainable environment: A proposed policy framework for BRICS economies," Resources Policy, Elsevier, vol. 86(PA).
    4. Abdelaziz Boukhelkhal, 2022. "Energy use, economic growth and CO2 emissions in Africa: does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13083-13110, November.
    5. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    6. Ma, Xuejiao & Ahmad, Najid & Oei, Pao-Yu, 2021. "Environmental Kuznets curve in France and Germany: Role of renewable and nonrenewable energy," Renewable Energy, Elsevier, vol. 172(C), pages 88-99.
    7. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    8. Zhiheng Wu & Guisheng Hou & Baogui Xin, 2020. "The Causality between Participation in GVCs, Renewable Energy Consumption and CO 2 Emissions," Sustainability, MDPI, vol. 12(3), pages 1-26, February.
    9. Ulucak, Recep & Danish, & Ozcan, Burcu, 2020. "Relationship between energy consumption and environmental sustainability in OECD countries: The role of natural resources rents," Resources Policy, Elsevier, vol. 69(C).
    10. Irfan, Muhammad & Rehman, Mubeen Abdur & Razzaq, Asif & Hao, Yu, 2023. "What derives renewable energy transition in G-7 and E-7 countries? The role of financial development and mineral markets," Energy Economics, Elsevier, vol. 121(C).
    11. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    12. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    14. Xu, Deyi & Sheraz, Muhammad & Hassan, Arshad & Sinha, Avik & Ullah, Saif, 2022. "Financial development, renewable energy and CO2 emission in G7 countries: New evidence from non-linear and asymmetric analysis," Energy Economics, Elsevier, vol. 109(C).
    15. Jahanger, Atif & Hossain, Mohammad Razib & Usman, Muhammad & Chukwuma Onwe, Joshua, 2023. "Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist?," Resources Policy, Elsevier, vol. 81(C).
    16. Kola Benson Ajeigbe & Fortune Ganda, 2024. "Leveraging Food Security and Environmental Sustainability in Achieving Sustainable Development Goals: Evidence from a Global Perspective," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    17. Umut Uzar, 2022. "The connection between freedom of the press and environmental quality: An investigation on emerging market countries," Natural Resources Forum, Blackwell Publishing, vol. 46(1), pages 21-38, February.
    18. Munir, Qaiser & Lean, Hooi Hooi & Smyth, Russell, 2020. "CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: A cross-sectional dependence approach," Energy Economics, Elsevier, vol. 85(C).
    19. Prempeh Kwadwo Boateng & Frimpong Joseph Magnus & Yeboah Samuel Asuamah, 2024. "The dynamics of financial development, environmental degradation, economic growth and population health in the Economic Community of West African States," Environmental & Socio-economic Studies, Sciendo, vol. 12(2), pages 13-27.
    20. Atif Jahanger & Muhammad Usman & Daniel Balsalobre‐Lorente, 2022. "Linking institutional quality to environmental sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1749-1765, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7022-:d:579968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.