IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i8p834-d610996.html
   My bibliography  Save this article

Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10 Be Natural Background Rates: Case Study in the Sonoran Desert, USA

Author

Listed:
  • Ara Jeong

    (Department of Geography Education, Korea University, Seoul 02841, Korea)

  • Ronald I. Dorn

    (School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287, USA)

  • Yeong-Bae Seong

    (Department of Geography Education, Korea University, Seoul 02841, Korea)

  • Byung-Yong Yu

    (Laboratory of Accelerator Mass Spectrometry, Korea Institute of Science and Technology, Seoul 02792, Korea)

Abstract

Land use changes often lead to soil erosion, land degradation, and environmental deterioration. However, little is known about just how much humans accelerate erosion compared to natural background rates in non-agricultural settings, despite its importance to knowing the magnitude of soil degradation. The lack of understanding of anthropogenic acceleration is especially true for arid regions. Thus, we used 10 Be catchment averaged denudation rates (CADRs) to obtain natural rates of soil erosion in and around the Phoenix metropolitan region, Arizona, United States. We then measured the acceleration of soil erosion by grazing, wildfire, and urban construction by comparing CADRs to erosion rates for the same watersheds, finding that: (i) grazing sometimes can increase sediment yields by up to 2.3–2.6x, (ii) human-set wildfires increased sediment yields by up to 9.7–10.4x, (iii) after some post-fire vegetation recovered, sediment yield was then up to 4.2–4.5x the background yield, (iv) construction increased sediment yields by up to 5.0–5.6x, and (v) the sealing of urban surfaces led to one-tenth to one-half of the background sediment yields. The acceleration of erosion at the urban–rural interface in arid lands highlights the need for sustainable management of arid-region soils.

Suggested Citation

  • Ara Jeong & Ronald I. Dorn & Yeong-Bae Seong & Byung-Yong Yu, 2021. "Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10 Be Natural Background Rates: Case Study in the Sonoran Desert, USA," Land, MDPI, vol. 10(8), pages 1-28, August.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:834-:d:610996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/8/834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/8/834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Yu & Jesús Rodrigo-Comino, 2021. "Analyzing Regional Geographic Challenges: The Resilience of Chinese Vineyards to Land Degradation Using a Societal and Biophysical Approach," Land, MDPI, vol. 10(2), pages 1-15, February.
    2. Yan Zhang & Zhilei Bi & Xin Zhang & Yang Yu, 2019. "Influence of Landscape Pattern Changes on Runoff and Sediment in the Dali River Watershed on the Loess Plateau of China," Land, MDPI, vol. 8(12), pages 1-12, November.
    3. Arjun M. Heimsath & William E. Dietrich & Kunihiko Nishiizumi & Robert C. Finkel, 1997. "The soil production function and landscape equilibrium," Nature, Nature, vol. 388(6640), pages 358-361, July.
    4. Jesús Barrena-González & Jesús Rodrigo-Comino & Yeboah Gyasi-Agyei & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates," Land, MDPI, vol. 9(3), pages 1-17, March.
    5. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    6. Jiadan Li & Jinsong Deng & Qing Gu & Ke Wang & Fangjin Ye & Zhihao Xu & Shuquan Jin, 2015. "The Accelerated Urbanization Process: A Threat to Soil Resources in Eastern China," Sustainability, MDPI, vol. 7(6), pages 1-19, June.
    7. Jonathan Sanderman & Asmeret Asefaw Berhe, 2017. "The soil carbon erosion paradox," Nature Climate Change, Nature, vol. 7(5), pages 317-319, May.
    8. Abazar Esmali Ouri & Mohammad Golshan & Saeid Janizadeh & Artemi Cerdà & Assefa M. Melesse, 2020. "Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques," Land, MDPI, vol. 9(10), pages 1-18, October.
    9. Gudrun Schwilch & Tatenda Lemann & Örjan Berglund & Carlo Camarotto & Artemi Cerdà & Ioannis N. Daliakopoulos & Silvia Kohnová & Dominika Krzeminska & Teodoro Marañón & René Rietra & Grzegorz Siebiele, 2018. "Assessing Impacts of Soil Management Measures on Ecosystem Services," Sustainability, MDPI, vol. 10(12), pages 1-26, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katharina Helming & Katrin Daedlow & Bernd Hansjürgens & Thomas Koellner, 2018. "Assessment and Governance of Sustainable Soil Management," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    2. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    3. Ecker, Olivier & Hatzenbuehler, Patrick L. & Mahrt, Kristi, 2018. "Transforming agriculture for improving food and nutrition security among Nigerian farm households," NSSP working papers 56, International Food Policy Research Institute (IFPRI).
    4. Claudia Hanson & Sanni Kujala & Peter Waiswa & Tanya Marchant & Joanna Schellenberg, 2017. "Community-based approaches for neonatal survival: Meta-analyses of randomized trial data," WIDER Working Paper Series wp-2017-137, World Institute for Development Economic Research (UNU-WIDER).
    5. Eugenia Ganea & Valentina Bodrug-Lungu, 2018. "Addressing Inequality in Vocational/ Technical Education by Eliminating Gender Bias," Revista romaneasca pentru educatie multidimensionala - Journal for Multidimensional Education, Editura Lumen, Department of Economics, vol. 10(4), pages 136-155, December.
    6. Gallopín, Gilberto, 2018. "Back to the future," Energy Policy, Elsevier, vol. 123(C), pages 318-324.
    7. Pandey, Shanta, 2017. "Persistent nature of child marriage among women even when it is illegal: The case of Nepal," Children and Youth Services Review, Elsevier, vol. 73(C), pages 242-247.
    8. OGUNNOWO, Fatai Abiodun & Prof. F. A. OKWO & JULIUS, Deborah Nwanne, 2023. "Availability and Utilization of Security Facilities in Federal Tertiary Institutions of Enugu State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(5), pages 931-941, May.
    9. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    10. Victor Kasulo & Rochelle Holm & Mavuto Tembo & Wales Singini & Joshua Mchenga, 2020. "Enhancing sustainable sanitation through capacity building and rural sanitation marketing in Malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 201-215, January.
    11. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    12. Alex. B. McBratney & Damien Field & Cristine L.S. Morgan & Jingyi Huang, 2019. "On Soil Capability, Capacity, and Condition," Sustainability, MDPI, vol. 11(12), pages 1-11, June.
    13. Tiantian Zhai, 2021. "Environmental Challenges, Opportunities, and Policy Implications to Materialize China’s Green Belt and Road Initiative," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    14. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    15. -, 2021. "The 2020 census round: challenges of the 2030 Agenda for Sustainable Development, the Sustainable Development Goals and the Montevideo Consensus on Population and Development," Población y Desarrollo 46727, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    16. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    17. Shannon L. Sibbald & Nicole Haggerty, 2019. "Integrating Business and Medical Pedagogy to Accomplish the Sustainable Development Goals," Journal of Education for Sustainable Development, , vol. 13(1), pages 92-101, March.
    18. Rahi Jain & Prashant Narnaware, 2020. "Application of Systems Thinking to Dent Child Malnutrition: A Palghar District, India Case Study," Millennial Asia, , vol. 11(1), pages 79-98, April.
    19. Asiamah, Ebenezer & Oduro-Yeboah, Charlotte & Mboom, Frank Peget & Atter, Amy & Idun-Acquah, Nancy Nelly & Nkansah, Jessica, 2022. "Assessment of the volume of seafood waste generation, utilization and management system from selected seafood processing companies in Ghana: A case study," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(07).
    20. Iyappan, Karunya & Babu, Suresh Chandra, 2018. "Building resilient food systems: An analytical review," IFPRI discussion papers 1758, International Food Policy Research Institute (IFPRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:834-:d:610996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.