IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v388y1997i6640d10.1038_41056.html
   My bibliography  Save this article

The soil production function and landscape equilibrium

Author

Listed:
  • Arjun M. Heimsath

    (University of California)

  • William E. Dietrich

    (University of California)

  • Kunihiko Nishiizumi

    (†Space Sciences Laboratory, University of California)

  • Robert C. Finkel

    (‡Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory)

Abstract

Hilly and mountainous landscapes are partially to completely covered with soil under a wide range of erosion and uplift rates, bedrock type and climate. For soil to persist it must be replenished at a rate equal to or greater than that of erosion. Although it has been assumed for over 100 years that bedrock disintegration into erodable soil declines with increasing soil mantle thickness1,2,3,4,5,6,7,8,9, no field data have shown this relationship. Here we apply two independent field methods for determining soil production rates to hillslopes in northern California. First, we show that hillslope curvature (a surrogate for soil production7) varies inversely with soil depth. Second, we calculate an exponential decline of soil production rates with increasing soil depth from measurements of the in situ produced cosmogenic 10Be and 26Al concentrations in bedrock sampled under soils of different depths. Results from both methods agree well and yield the first empirical soil production function. We also illustrate how our methods can determine whether a landscape is in morphological equilibrium or not.

Suggested Citation

  • Arjun M. Heimsath & William E. Dietrich & Kunihiko Nishiizumi & Robert C. Finkel, 1997. "The soil production function and landscape equilibrium," Nature, Nature, vol. 388(6640), pages 358-361, July.
  • Handle: RePEc:nat:nature:v:388:y:1997:i:6640:d:10.1038_41056
    DOI: 10.1038/41056
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/41056
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/41056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nele Lehmann & Tobias Stacke & Sebastian Lehmann & Hugues Lantuit & John Gosse & Chantal Mears & Jens Hartmann & Helmuth Thomas, 2023. "Alkalinity responses to climate warming destabilise the Earth’s thermostat," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    3. Dlamini, P. & Orchard, C. & Jewitt, G. & Lorentz, S. & Titshall, L. & Chaplot, V., 2011. "Controlling factors of sheet erosion under degraded grasslands in the sloping lands of KwaZulu-Natal, South Africa," Agricultural Water Management, Elsevier, vol. 98(11), pages 1711-1718, September.
    4. Ara Jeong & Ronald I. Dorn & Yeong-Bae Seong & Byung-Yong Yu, 2021. "Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10 Be Natural Background Rates: Case Study in the Sonoran Desert, USA," Land, MDPI, vol. 10(8), pages 1-28, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:388:y:1997:i:6640:d:10.1038_41056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.