IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377420302043.html
   My bibliography  Save this article

Prediction of the effects of management practices on discharge and mineral nitrogen yield from paddy fields under future climate using APEX-paddy model

Author

Listed:
  • Kamruzzaman, Mohammad
  • Hwang, Syewoon
  • Choi, Soon-Kun
  • Cho, Jaepil
  • Song, Inhong
  • Jeong, Hanseok
  • Song, Jung-Hun
  • Jang, Teail
  • Yoo, Seung-Hwan

Abstract

This study is to evaluate the BMPs in the reduction of surface discharge and mineral nitrogen yield from paddy cultivation for three future time slices (e.g., the 2010s, 2040s, and 2070s) using APEX-Paddy (Agricultural Policy/Environmental eXtender-Paddy) model. The model was calibrated and validated for surface discharge and mineral nitrogen yield using 3-year monitoring data (2013–2015) from the conventional paddy management field (CMP-1). For surface discharge and mineral nitrogen yield estimates, the future projections of 29 GCMs (General Circulation Model) were bias-corrected and applied to the calibrated APEX-Paddy model. We investigated five specific management strategies related to paddy drainage outlet regulation and new fertilization methods, as the BMPs minimize the mineral nitrogen yield and surface discharges due to climate change. The modeling results indicated that the effects of BMPs would vary by future climate scenarios (i.e., RCP4.5, RCP8.5) and periods (i.e., the 2010s, 2040s, 2070s). It was generally expected that the surface discharge and mineral nitrogen yields would increase in the future. The combination of raising drainage outlets and soil test-based fertilization (DOR-STF) showed a substantial reduction in surface discharge in both scenarios (RCP4.5 and 8.5); the highest reduction rate was observed in the 2010s and was estimated at 21.9 % under RCP4.5. Soil test-based fertilization (STF) showed a substantial reduction in mineral nitrogen yield by 31.0 and 28.3 % during the 2010s under RCP8.5 and RCP4.5, respectively followed by DOR-STF, as compared to conventional management practice (CMP-1). However, the combination of drainage outlet raising, and fertilizer application before outlet weir installation (DOR-FABWI) management resulted in increased mineral nitrogen yield of up to 31.0 % under RCP4.5 and 36.7 % under RCP8.5. The study findings indicate that climate change will increase exports of mineral nitrogen from paddy fields. Nevertheless, appropriate BMPs may play a vital role in reducing the mineral nitrogen yields for the production of paddy rice in future climates, and these effects may vary according to future climate conditions.

Suggested Citation

  • Kamruzzaman, Mohammad & Hwang, Syewoon & Choi, Soon-Kun & Cho, Jaepil & Song, Inhong & Jeong, Hanseok & Song, Jung-Hun & Jang, Teail & Yoo, Seung-Hwan, 2020. "Prediction of the effects of management practices on discharge and mineral nitrogen yield from paddy fields under future climate using APEX-paddy model," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420302043
    DOI: 10.1016/j.agwat.2020.106345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420302043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renate Wilcke & Thomas Mendlik & Andreas Gobiet, 2013. "Multi-variable error correction of regional climate models," Climatic Change, Springer, vol. 120(4), pages 871-887, October.
    2. Kathrin Hasler & Hans-Werner Olfs & Onno Omta & Stefanie Bröring, 2017. "Drivers for the Adoption of Different Eco-Innovation Types in the Fertilizer Sector: A Review," Sustainability, MDPI, vol. 9(12), pages 1-22, November.
    3. Jeon, Ji-Hong & Yoon, Chun G. & Donigian, Anthony Jr. & Jung, Kwang-Wook, 2007. "Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 75-86, May.
    4. Kiniry, James R. & Major, D. J. & Izarralde, R. C. & Williams, J. R. & Gassman, Philip W. & Morrison, M. & Bergentine, R. & Zentner, R. P., 1995. "Epic Model Parameters for Cereal, Oilseed, and Forage Crops in the Northern Great Plains Region," Staff General Research Papers Archive 894, Iowa State University, Department of Economics.
    5. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    6. Chung, Sang-Ok & Kim, Hyeon-Soo & Kim, Jin Soo, 2003. "Model development for nutrient loading from paddy rice fields," Agricultural Water Management, Elsevier, vol. 62(1), pages 1-17, August.
    7. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    8. Mishra, Atmaram & Ghorai, A. K. & Singh, Sita Ram, 1998. "Rainwater, soil and nutrient conservation in rainfed rice lands in Eastern India," Agricultural Water Management, Elsevier, vol. 38(1), pages 45-57, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bazrkar, Mohammad Hadi & Danquah, Eric Owusu & Choi, Soon-Kun & Kim, Min-Kyeong & Jeong, Jaehak & Cho, Jaepil, 2023. "Projected unseasonable and shorter actual growth period for paddy rice and more pollutant loads into water bodies in a changing climate," Agricultural Water Management, Elsevier, vol. 279(C).
    2. Edward Osei & Syed H. Jafri & Philip W. Gassman & Ali Saleh, 2023. "Simulated Ecosystem and Farm-Level Economic Impacts of Conservation Tillage in a Northeastern Iowa County," Agriculture, MDPI, vol. 13(4), pages 1-22, April.
    3. Kim, Dong-Hyeon & Jang, Taeil & Hwang, Syewoon & Jeong, Hanseok, 2021. "Paddy rice adaptation strategies to climate change: Transplanting date shift and BMP applications," Agricultural Water Management, Elsevier, vol. 252(C).
    4. A, Tadesse & Jeong, Jaehak & Green, Colleen H.M., 2022. "Modeling landscape wind erosion processes on rangelands using the APEX model," Ecological Modelling, Elsevier, vol. 467(C).
    5. Edward Osei & Syed H. Jafri & Ali Saleh & Philip W. Gassman & Oscar Gallego, 2023. "Simulated Climate Change Impacts on Corn and Soybean Yields in Buchanan County, Iowa," Agriculture, MDPI, vol. 13(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    2. Antonopoulos, Vassilis Z., 2010. "Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece," Agricultural Water Management, Elsevier, vol. 98(2), pages 321-330, December.
    3. repec:zbw:inwedp:512011 is not listed on IDEAS
    4. Jeon, Ji-Hong & Yoon, Chun G. & Donigian, Anthony Jr. & Jung, Kwang-Wook, 2007. "Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 75-86, May.
    5. Bernhard Stürmer & Johannes Schmidt & Erwin Schmid & Franz Sinabell, 2011. "A Modeling Framework for the Analysis of Biomass Production in a Land Constrained Economy. The Example of Austria," WIFO Studies, WIFO, number 41748, December.
    6. Havlik, Petr & Herrero, Mario & Mosnier, Aline & Obersteiner, Michael & Schmid, Erwin & Fuss, Sabine & Schneider, Uwe A., 2011. "Production system based global livestock sector modeling: Good news for the future," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114552, European Association of Agricultural Economists.
    7. Fuss, Sabine & Havlik, Petr & Szolgayova, Jana & Schmid, Erwin & Obersteiner, Michael, 2011. "Large-Scale Modelling of Global Food Security and Adaptation under Crop Yield Uncertainty," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114347, European Association of Agricultural Economists.
    8. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Brinkhoff, James & Houborg, Rasmus & Dunn, Brian W., 2022. "Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    11. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    12. Jang, T.I. & Kim, H.K. & Im, S.J. & Park, S.W., 2010. "Simulations of storm hydrographs in a mixed-landuse watershed using a modified TR-20 model," Agricultural Water Management, Elsevier, vol. 97(2), pages 201-207, February.
    13. Kriti Poudel & Ram Hari Timilsina & Anish Bhattarai, 2020. "Effect Of Crop Establishment Methods On Yield Of Spring Rice At Khairahani, Chitwan, Nepal," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 3(1), pages 6-11, November.
    14. O. Borodina, S. Kyryziuk, V. Yarovyi, Yu. Ermoliev, T. Ermolieva, 2016. "Modeling local land uses under the global climate change," Economy and Forecasting, Valeriy Heyets, issue 1, pages 117-128.
    15. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    16. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    17. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    18. Zhao, Xin & Calvin, Katherine & Patel, Pralit & Abigail, Snyder & Wise, Marshall & Waldhoff, Stephanie & Hejazi, Mohamad & Edmonds, James, 2021. "Impacts of interannual climate and biophysical variability on global agriculture markets," Conference papers 333245, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    20. Aditi Bhadra & Arnab Bandyopadhyay & Rajendra Singh & Narendra Raghuwanshi, 2010. "An Alternative Rotational Delivery Schedule for Improved Performance of Reservoir-based Canal Irrigation System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3679-3700, October.
    21. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420302043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.